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INTRODUCTION

Continuum Mechanics as it was originally developed by Navier,
Cauchy, Poisson and Stokes among others, consisted of Elasticity Theory
and Hydrodynamics. In the former, one is interested in the response,
particularly the stresses, which will arise in a solid body which is
subjected to "external” forces--perhaps torques also. In the latter,
one analyzes principally the motion of fluids,

Relatively early, thermal stresses were included in the
Elasticity Theory by Duhamel and Neumann, However, these have always
retained a special position, as thesy were not subject to Kirchhoff's
Uniqueness Theorem of Elasticity Theory, which states that in the
domain of linear elasticity the stresses in a simple continuous body
due to externally applied forces are uniquely determined., Kirchhoff's
theorem is true under the assumption that St. Venant's Compatibility
Conditions are fulfilled for the elastic deformation of the whole body.

not
These conditions canAbe applied directly to the case of thermal stresses,

which explains their special position, )

In the second half of the 19th Centu;y, plastic phenomena in
continua were investigated by Tresca, St. Venant, Levy and others,
This "phenomenological” theory of plasticity, which was further developed
later by von Mises, Prandtl, Reuss, Prager, Her.cky, Nadai and others,

stands to some extent between Elasticity Theory and Hydrodynamics,

Thus the resulting deformatiun (we call it also total deformation eT)

 Np—
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of the piastic body contains an elastic part, e, which as in the usual
Elasticity Theory gives rise to stresses, and a secoud part, which we
call plastic deformation, ep, which changes the shape of the body but
develops no stresses, One has such deformations in pure form in fluids.
Therefore

€ =€+ ¢ (1)

Since at least a part of the internal stress remains without external
forces after plastic deformation, the elastic strain evidently cannot
fulfill the compatibility conditions, There one sees an analogy between
thermal stresses end internal stresses after plastic deformation.

In principle, it is possible to scribe a volume element (for
instance on the surface of the body) before carrying out the plastic
deformation, and to measure the deformation which it has suffered with
respect to the initial conditions. This gives the eT. When the volume
element is now cut out and allowed to relax, it takes on not its orig-
inal shape but retains the plastic strain ep. ANow this element is
found as at the beginning in its "natural" state, as it 1s used in
Zlasticity Theory by Cauchy, Green and others. The element has indeed

changed its shape, but not its state.1 A function that makes a statement

1This statement is rigorously true only when the plastic defor-

mation results without (plastic) volume change., cf, 82,

about a body will bhe called a "State Function" or "State Quantity" if

its values can be measured in an experiment at a certain time without
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knowing the previous history of the body. Accordingly, the portion ep
of the total strain is not a state function, whereas the elastic strain
€ is one, The distinction between state functions and functions not
changing the state is of great significanc. wnd will concern us more
often,

It became obvious only in recent years that continuum mechanics
with its three branches; Elasticity Theory, Plasticity Theory and Hydro-
dynamics, each in its existing range, is not sufficient to describe
all macroscopically measurable mechanical properties of a body.

A simplc example may explain this: a beam with its ends fixed in two
rigid walls be elastically or partly plastically hent as in Fig. 1.

Then let both the walls remain in this position and let the rod become
hot. As a result of heating the critical shear stress (defined as that
shear stress at which a noticeable flow of the material starts) of the
rod decreases, i.e., a flow in the interior of the rod can take place by
the gradual replacement of elastic by plastic deformation.; After hold-
ing the rod sufficiently long at the elevated temperature, the rod is
again cooled to room temperature and the restraint at the ends removed.
We then observe practically no bending back of the rod; the deformations
have become permanent. We can cut out the volume element and find that

no (macroscopic) internal stresses are present.1 Nevertheless, the rod

“The bending of atomic planes ment ned later is combined with
self stresses which change their sign in microscopic domains and hence
cannot be found by the above mentioned cutting experiment. Like the

macroscopic stresses, these self stresses lead Lo work hardening,

(See below,.

———




responds to subsequent deformation different from a rod which has the
same shape "without history,” If the critical shear stress of individ-
nal volume elements were now measured, it would be found that the body
was in o definite work hardened ceondition, The change of state that
has take, place can be characterized in another manner, which can be
described more easily by the continuum theory. If the same rod is
irradisted with X-rays, or if it is transparent to visible light, then
diffraction effects are found that have their origin in the bending of
the original atemic lattice planes of the rod. By this experiment

the macroscopic curvature can be measured explicitly as a function of
position. Therefore, this stress-free curvature o1 the atomic planes
is characteristic of the state of the rod. In the previous continuum
mechanics, such curvatures heve nowhere be . described,

In order to comprehend such geometric changes cf the body, one
must complete the three deformation tensors of eq. (1) by the addition of
rotation tensors ”T, Ly wp to form the general asymmetric second-order
tensors BT, 8, Bp which we shall denote throughout as '"'Distortion Tensors,"

Work hardening still cannot be correctly treated today in con-
tinuum mechanics., Investigations of the last 20 years have shown that
it has its origin in the seif stresses that develop during the plastic
deformation of the material. Hence, a detailed knowledge of the self
stresses should, in principle, allow a calculation of the hardening of
the material, Furthermore, it was shown that all the self stresses as
well as bending of atomic planes (therefore also the work hardening)
can be traced back to the same physical entity, the dislocation. .

However, this is not only responsible for the change of state of the
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body but also lor that portion ol its total deformation which does not
alter the state o1 the body. Accordingly, a continuum theory of dislo-
cations is evidently required in order to close the still wide gaps of
cont inuum rechanices, In addition to the above features, this continuum
theory of dislocations should include a theory cof self stresses as well
as a th. ry ol stress-free bending of atomic planes, as was first formu-
lated by Nye [113]. Also, it must descrike the relationship between
the dislocation motion and plastic defermation., In this way we are led
to phenomenological plasticity theory. Thus one obtains, interrelated
and overlapping, Elasicity Theory, Theory of Dislocations and Theory of
Plasticity as branches of the comprehensive continuum mechanics, which
treats all mechanicul phenomena occurring in a solid body.

It remains yet to be said how one has to include in this con-
tinuum mechanics thermal stresses and other stresses (we refer to
stresses due to magneto- and electrostriction) whick arise neither from
external forces nor from plastic “.formacion. On heating a body uni-
formly to a nigher temperature, its material points undergo displace-
ments, without introducing restoring forces., The samc ct is also
characteristic of plastic deformation. Since it is apparently natural
to consider the case of deformation by temperature fields as a kind of
plastic deformation, we will call it "quasi-plastic.”" One can then
trace the thermal stresses back to certain "quasi-dislocations'" and
thus according to Kroner [82] a theory of thermal stresse. is obtained,
which is to some extent a continuum theory of 'quasi-dislocations."
This agreement is not only formal but also physically reasonable, and
thus it appears quite natural to include thermal stresses (and the

other abovc-mentioned stresses) in the Continuum Theory of dislocations.

P
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The treatment of particularly interesting problems, for example, those
in which there exist simultaneously thermal stresses and self stresses
after plastic deformation, is made remarkably easy in this way,

The whole continuum mechanics of solid bodies is now contained

in a few eguations, For the stationary state these are the equations,

1

We consider that the boundary conditions are included in
these equations by allowing F and & to degenerate surfacewise (and
also linewise or pointwise). If one allows external twisting moments

also, further equations arec added,

divg + F = 0, curl g = (2)

where 3 and g are the stress tensor and the elastic distortion tensor;
F and 2,the density of external forces and of dislocations (including

quasi-dislocations) respectively. To this are added the equation for
the elastic energy density (= strain energy function or elastic

2
potential)

2
We use throughout the text the summation convention where we
sum from 1 to 3 over repeated indizes. The use of tensor notation is

explained in the appendix,

(3)

i
e==0C. ¢€..

2 ij i)
and the constitutive equZtions, for j.astance, Hooke's Law, in the case

of small deformations. Under these circumstances the uniqueness theorem
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of continuum mechanics of solid bodies can be proved: by specifying
the extern.l forces F and dislocations & the stresses and elastic dis-
tortions of the body are uniquely determined, From this it follows
immediately that all self stresses arise from dislocations, However,
in the case of larger deformations this is not true, as the example of
the invertible hemispherical shell shows [160].

In the beginning of the twenties, the interest of the solid
state physicist was concentrated on the crystalline structure which
most of our materials, particularly the metals exhibit., These are
composed of crystals (polycrystalline) in regions of an average
diameter of at least 10-3 cm ( corresponding to nearly 1015 atoms).
With methods which were developed then and subsequently greatly
improved, it is possible to grow a "single crystal" of almost any size
of many materials today. Although these are of great significance for
experimental and theoretical research, however, they have also found
important applications in industry, e.g., in transistors of communica-
tion engineering,

The concept of the dislocation was used first in 1928 by
Prandtl [108j--still in vague form--to explain anelastic phenomena
in metals, 1In 1929 Dehlinger [29] was able to show by studies of
recrystallization, i.,e., the formation of new grains which one
observes after heavy plastic deformation and.which has its origin in
the large self stresses developed thereby, that these self stresses
are to be traced back to certain defective zones of the otherwise fully

regular arrangement of atoms in the crystal, and that these regions

can be metastab’e, Dehlinger named his self stress sources 'interlocks"

o P e b




(Verhakungen) which are nothing but two dislocations of opposite sign
lying close together. It was thereby explained why self stresses are
gensrally possible at all in a crystalline medium. As 2 result of
these investigations, attention was particularly directed to distur-
bances of the reguiar atomic arrangement. One calls such disturbances
"lattice defects"; they play a decisive role in modern solid state
physics,

In 1934, the lattice defect which we illustrate with aid of
Figs. 2 and 3 was described independently by Orowan [114], Polanyi [118]
and Taylor [149]. Figure 2 shows a completely regular crystal, called
"Ideal Crystal." Figure 3 shows the same crystal after the invasion of
a disturbance from the x1 direction, The disturbance is characterized
by the fact that one of the lattice planes terminates in the interior
of the crystal, Today, the line of termination of such an extra lattice
plane is called an "edge dislocation line" or simply "edge dislocation,'
Figure 4 shows the same crystals after the disturbance is no longer in
the crystal, By the movement of one dislocation through the crystal,
the upper and lower halves of the crystal have been displaced relative
to each other by one interatomic distance. The vector which specifies
the relative displacement in the slip plane is called "the slip vector,"
g it is perpendicular to the edge dislocation line. 1If there was a
shear stress applied to the crystal, work was done by passing the dis-
lccation through the crystal. Consequently, such a shear stress con-
stitutes a driving force for dislocation motion. The above mentioned

authors now noticed that the movement of an edge dislocation must be




possibie under the influence of relatively small stresses. Figure 3
gives a certain optical impression that near the dislccation the
adjoining atoms should be more easily movable than the rest,
Already in 1926, Frenkel with the help of an atomic model
had computed that slip which produces the transition of the crystal
of Fig. 2 to tpat of Fig. 4 requires a shear stresc of the order of ]
magnitude of the shear modulus, i, if both of the moving lattice planes
slip rigidly by an interatomic distance, Experimentally, a critical b
shear stress kore than a thousandfold smaller is measured. The plés—
ticity mechanism proposed by Orowan, Polanyi and Taylo: should lead

to actually a smaller critical shear stress.1

1According to Dehlinger {[31], these purely mechanical consider-
ations are not sufficient to prove that the rigid glide of two adjacent
lattice planes cannot actually take place. Therefore, statiscvical
thermodyramic considerations, particularly the theorem that in a solid
body only processes of lowest order can take place, must be invoked.
Applied to our case it says: it is extremely unlikely that by temper-
ature fluctuations those atoms of a lattice plane simultaneously have
such an increased energy that they make a simultaneous slip step,
which would be equal to a rigid gliding of the lattice plane in question. ;
Such considerations are essential if we should want to calculate the
theoretical critical shear stress under the assumption of the dis-
location mechanism. Seeger [137] has shown that the critical shear
stress, neglecting temperature fluctuations, which one would calculate

purely mechanically, often comes out to more than 100 percent too large,




10
(Footnote cont'd,)
Because of its importance for such problems, we should mention
a new work of Donth [164], who has shown that in a statistical treatment
of dislocations one should prouceed from Kolmogoroff's equations for
statistical processes, since the assumptions for the application of an

Arrhenius equation are not satisfied in the case of dislocation,

Burgers [12] in 1939 has described an additional lattice defect
which causes the original lattice planes now connected in the manner of
a screw surface (Fig. 5). The screw axis is called a "screw dislocation
(line}." One sees that these screw dislocations also will be relatively
easily movabie, One can imagine that the screw dislocation in Fig. §
invaded from the X direction., Figs 6 and 7 show the crystal after the
movement of the screw dislocation of Fig. 5 in X, and Xq directions,
respectively. Here again certain crystal parts are displaced relative
to each other. But the slip vector here is parallel to the screw dis-
location line., Burgers has further shown that there are also disloca-
tions whose slip vector is inclined to the line direction of the dis-
location, Such dislocations are appropriately considered as the super-
position of one screw and one edge dislocation along the same line, so
that such dislocations are nct fundamentally new.

However, the possibilities of motion of the dislocation have
not yet beer ccmpletely discussed. There is still the important pos-
sibility to consider a motion of the dislocation of Fig. 3 in Xq direc-
tion, This means an enlargement of the extra lattice plane, which is

possible in practice only if atoms from the neighborhood of the dislo-

cation are added by diffusion, The migration of an atom in a crystal

e —————— s e o = e
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always nccurs over an energy barrier of the order of 1 ev (= 1,63 x

10-18 kg-m) which cannct be overcome by external applied stresses.

1Macroscopically 1 eV is a very small energy. However, this
. -24 3 .
mist be localized in a space of only some 10 cm , and this is

obviously not possible from externally applied stresses.

Rather the temperature fluctuations must make the necessary "activg-
tion energy" available. Consequently such a diffusion can take place
to a large extent only at elevated temperature. The dislocation motion
taking place ir this way is called "climb' in contrast to the "slip"
described above., Each atom which attaches itself to the extia lattice
plane leaves behind a so-called "vacancy." These vacancies are to be
counted in the volume we can measure macroscopically, i.e., by the
climb of dislocations the volume of the body changes; this kind of
motion, after Nabarro [108], is called, therefore, '"non-conservative'
(with respect to the volume), whereas the glide motion is called
"conservative,"

If the dislocation were to climb, for example, in the Xg
direction completely through the crystal of Fig. 2, this would require
that a new lattice plane be formed and causing the crystal to be
elongated in the x, direction. Accordingly, a pure tensile stress

3

(°11 > 0) should exercise on the dislocation a restraint to climb in

Xg direction., A compressive stress, however, may remove the extra

lattice plane; however, this is possible only until all the vacancies

in the neighborhood of the dislocation are filled up with the atoms
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of the extra lattice plane. We see that the volume of a body can even
become plastically changed, a possibility which will be included in the
theory developed in Chapter I,

The climb of the dislocation plays an important role in many
processes in a -olid body at temperatures just below the melting temper-
ature, e.g., recrystallization and the formation of casting stresses,

A look at Figs. 2 through 7 shows that we should expect self
stresses in the states of Figs. 3 and 5, whereas the crystals in the

1
remaining Iigures are in the natural state.

1Strictly speaking, for instance, the state in Figs. 2 and 6
differ from Fig. 3 by the fact that in consequence of the ledge
developed the crystal has a changed surface, It is not necessary
to consider this for our purpose, See, e.g., the discussion of

Nabarro [110], pg. 330.

We will show in 81 the close relaticnship of the states of
these self stresses with those of Volterra distortions. Based on
the works of Volterra in 1939 Burgers [13] developed an elasticity
theory for a single dislocation in a continuum, from which the self
stresses resulting from dislocations cor 1 be calculated. This
fundamental work was followed by numerous special elssticity thkeory
calculations on dislocations.

Hereafter the following picture of the process of plastic
deformation in a metal can be given: under the influence of the

externally applied stresses, large amounts of new dislocations arsz
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developed in addition to the dislocations always existing in the
crystal.l These move according to the forces exerted whereby they

produce the macroscopically observed deformations, However, the

1These originate during the growth of the crystals, which

makes them possible in general,

increasing number of other dislocations produce seli stresses in
increasing amounts, which oppose the motion of dislocations, as waé
first proposed by Taylor [149]., This effect leads to the work

hardening of materials.

g
§
!
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CHAPTER I
DISLOCATIONS IN CONTINUA: GEOMETRY
§1. Dislocation and Volterra Distortion

In the beginning of this chapter, the close relationship

between dislocation and Volterra distortion will be claril‘ed.
a

Let f be\)lane surface ending, at least partly, in the inter-
ior of a simply connected continuous medium with (dimensionless) unit
normal vector ﬁ(g) at position 5.1 Let f(g) be the unit tangent vector
of the edge lines of f which are oriented according to the right hand
screw rule, We imagine that the stress free initial state of the body
under consideration is cut along the surface f, then the positive cut
edge of f suffers the infinitesimal plastic displacement éé(g) relative
to the negative., The displacement 5§ will be carried out in two steps,
since the analysis will be in terms of the two components parallel

(ééll) and perpendicular (6&1_) to f. After the parallel displacement

GEII both the sides of the surface f are still in touch with each other,

1The restriction of a plane surface facilitates description, but
is not necessary. We see easily that the essential results of this
paragraph, particularly the definition of the dislocation are valid also

in the case of curved surfaces.

14
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For the latter displacement, 6g | , perpendicular to f, we have
two cases to distinguv‘sh: (1) Bcth the sides of f are pushed apart; for
this case, we decide chat the resulting void is filled with matter
identical to the rest of the body. (2) Cases in which SEJ_signifies a
displacement of both the cut edges toward one arother; just enough
material shall be removed from one of the two cut edges that this dis-
placement becomes possible, After the execution of the operations, we
imagine everything to have coalesced and the forces which produced the
displacements to have been removed, so that again a united simple coher-
ent body exists, in which, naturally, self stresses remain. Irrespec-
tive of the material and shape of the body, these are determined by the
position of the surface f, i,e., by 5, as well as by the resulting
"impressed' or "plastic' relative displacement §g.

We remark further after a well-known theorem of Colonnetti [18]
that the volume of the body in the final state differs from that in the
initial state by the volume of the added or removed material, thus by
6V = ﬁf n - 6g df. This theorem holds only in the domain of linear
elasticity theory and there also only for homogeneous bodies (thus, for
example, not for bodies which consist of two homogeneous parts with
different elastic constants). Along the surface f the elastic deforma-
tions and torsions of the volume element of the body are changing dis-
continuously, which was first investigated by Weingarten [157] and

1
later in detail by Somigliana [147]. However, if both cut edges of

1
The older results of the self stress theory have been reported
by Nemanyi [111]. This work contains also many selections valuable

even today.

3w
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a surface element, Af, of f have merely suffered a rigid displacement,
then the strains are continuous across Af; the rotation is also contin-
uous across Af, It is additionally necessary that 6§ = constant on Af,
At the end of the operation, the body shall be again simply
connected, with no cracks, thus the cut edges of the total surface £
cannot be rigidly displaced toward one another, Dislocations are formed
by the following process. Let éé be constant on nearly the total surface
f, except at the edge of f let it decrease very rapidly to zero.
Figure 8 shows the variation of Gé on a plane surface f assumed circular
for simplicity. We now define a dislocation line as the boundary of the
surface £, or more precisely, the dyadic product —féé = - (tiégj), where

by 6§ shall be meant the constant displacement on most of the surface,

1The minus sign is conventional, in conformity with the usually

employed sign convention of Frank [47].

To say it more precisely: there is no singular line -tég, but a
quasi-singular band of very small width 2{ (Fig. 8). Hence we complete
the above definition by adding that this shall be valid for the limit

g—0,

2 -
Then the function 8g assumes the character of a Heaviside step

function in the plane in which f lies,

A second prescription leads to Volterra distortions. It is

required that initially (or at the latest after the cutting along f) the
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boundary of f is surrounded by a hollow torus of radius > {. Then the
body is of course no longer simply connected, and the surface f is
bounded everywhere by the surface of the body. Due to this, a rigid
displacement of the cut edge of the total surface f is possible,

If we set éé = constent, then we obtain a so-called Volterra distorticn
state of the first kind, so at large distances we cannot distinguish
between the hollow torus and the state developed through a dislocaticn
(Principle of St, Venant), Burgers' investigations on the elasticity
theory of dislccations are based on this conclusion,

We shall talk in 87 about the Volterra distortion state of the
second kind, in which the rigid relative displacement is a rigid rota-
tion of the cut edge. From our standpoint this is not as important as
the state of 6g = constant,

From the definition of the dislocation it follows that:

1. The dislocation, as the boundary of a surface, can only
end on the surface of the body.

2. Since the strain and rotation remain continuous across the
surface f, it can no longer be found experimentally after the formation
of the dislocation iine, Thus all surfaces bounded by t could have
served as cut surfaces in order to produce the dislocation or the dis-
tortion state, i.,e., it is completely determined by the edge limne s,and
the relative displacement 6g.

Assume that a stress resulting from external forces was preseut
in the body during the operation of the relative displacement. Then
this stress could do work during the displacement. Consequently,

stresses exert forces in the body in the sense of the production and
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propagation of disleccations., In particular, if a shear stress acts
on a plane, then it creates a tendency for conservative formation and
propagation of the dislocation (i.e., 6g|| to the surface), whereas
2 normal stress perpendicular to the surface means a tendency for non-
conservative formation and propagation of the dislocation (6gl to the
surface). Whether such processes will actually be induced through the
application of external stresses alone oa the body will depend on the
cohiesion forces of the material, Especially then, for the nonconserva-
tive formation and propagation of a dislocation, diffusion of msatter
will be necessary. In the introduction it was pointed out that these
processes are the fundamental mechanisms of plastic deformation in
actual bodies. Therefore, we assume this also for our ideal continuum.
With reference to the explanations in the introdvction, we
denote the conservative propagation of a dislocation as glide and the
associated surface f as the slip plane. The nonconservative propaga-
tion we call climb, the associate surface f, the climb plane. In
general, we speak also of the motion of the dislocation along its
motion surface, We say further that a dislocation has an edge

character where t L 6g and screw character where t I' 6g. Where t

is inclined to Sg, it has mixed character. Figures 9 and 10 show the
formation of a pure edge and screw dislocation, Obviously the dislo-
cation formed purely nonconservatively is an edge dislocation. This
corresponds to the statement in the introduction that only edge dislo-
cations climb in the crystal, The conservatively formed dislocation
has, in gemneral, mixed character. This corresponds to the result that

not only screws but also edge dislocations glide in the crystal,
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These ideas clearly show that the dislocation concept employed here
is nothing but a transfer of the dislocation concepts from the

crystal to the continuum.

82, Plastic and Elastic Distortions

First of all, a remark on the ideal continuum, Let it be
assumed for simplicity that in the beginning it is in a homogeneous
state., On the other hand, it would be a limitation of fundamental:
impoir'tance if we assume isotropy also. Here we do not mean elastic
isotropy, this is completely unimportant for the geometric analysis of
this section. On the contrary, the ). ssibility that the medium is
geometrically anisotropic must be considered., This means that at every
point of the medium, three linearly independent, distinct directions
exist about which it is assumed that their angles with three normal
directions in space can somehcw be measured. This geometric structure
must therefore be demanded, since the real bodies to which the continuum
theory shall hereafter be applied, have this structure, We show it, for
example, by means of X-ray techniques,

We assume that this structure is a property of the individual
volume elements in the continuum, The stress free state of the medium,
in which the distinct directions of all volume elements are parallel
to one another, is defined as the initial state. In the final state,
we have then a certain orientation distribution which gives proof of
the rotations of the volume elements that have taken place (see below).
For simplicity, we assume that the distinct directions in the initial

state are orthogonal to one another., The reader used to think of crystals

L e m—
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may picture to himself the continuum somewhat like a primitive cubic
crystal with vanishingly small lattice constants,

We can now allow the operations described in the last para-
graph to take place at very many surfaces f, When these become infin-
itely dense and the proper relative displacements 6E are continuously
distributed, we can perform in this way continuously distributed pure
plastic or also mixed plastic-elastic deformations of the body. The
first process may be illustrated by Fig, 11. This shows an isolated
volume element dV in the initial state (a). This will be cut along
surfaces df at distances dx2 perpendicular to x2-direction and after-
wards a relative displacement ég imposed on every two neighboring
layers, We imagine the passage to the limit 6x2 -0, 6§ = 0 carried
out maintaining 65/6x2 constant, In the case of Fig. 11(b), the voids
shall be filled with matter of the same volume element in such a way
that the density distribution in it remains homogeneous. At the end
let all coalesce again. The volume element in Fig. 11(b) is then
completely homogeneously plastically stretched (and thereby 'thinned")
and in Fig. 11(c) and 11(d) homogeneously plastically sheared.

We generally denote by dg. the relative plastic displacement

J

of the boundary surface of the volume element on the +xi side with

respect to that one on the -x, side and define the asymmetric tensor

i
P P
of the plastic distortion B = (Bij) through the relation

P

dgj = Bij dxi (I.1)

where dxi shall be referred to the relative position of the mentioned

boundary surfaces and to the original state., The plastic distortions
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which correspond to Fig., 11(b) to 11(d) are accordingly to be denoted
respectively.

by 5:2’ B;a and B:l,A The diagonal components of the plastic distortion
tensor B:J are thus plastic elongations, the remaining components

are plastic shears whereby the first index indicates the glide planes
and the second the glide direction.

It is now particularly important to remark that in the case of
plastic distortion, the orientation of the volume element is nrot changed,

We conclude this from the way the distortion in Fig. 11 comes about.1

1One may conceive the volume element of Fig. 11(a) somewhat like
an infinitely densely packed band of material lines, which lie parallel
to the x2-direction. The operations which Fig. 11(b) to 11(d) convey
obviously do not alter the direction of these lines, We can also simply

postulate the preservation of the orientation, because the real bodies

for which the theory is later applied, show this property.

Hence, the distinction between the shears Bgl and Biz is not a rigid
rotation but a "plastic rotation" of the volume element while prererving
its orientation (Fig. 12(a),(b)). This statement holds for small dis-
tortions, Then the symmetric part of Bij describes a pure plastic strain

P
€5

ing the orientation., Also for large distortions, the division of distor-

and the antisymmetric part a pure plastic rotation w?j both maintain-

2
tions into strain and rotation holds

2The additive combination of deformation and rotation holds in

the case of large distortions only if dxi in eq. (1.1) is referred to

the initial state. ct., 8§10,
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P P P

—4 I.z
513 ‘ij +w (1.2)
Here, however, we have to understand by w:j the well-known asymmetric
tensor for large rotations (Versor) [34].1 On the other hand, eij ° T

remains symmetric. See also 810,

1Volu-e 1, p. 78.

The deformations of the volume element considered hitherto took
place without stress. Now we come to the case of the elastic deforma-
tion, Let daj be the elastic relative displacement of the boundary sur-
faces as before. Then we define the asymmetric tensor of the elastic

distortion B = (Bij) by the equation

=R &
daj B dx, (1.3)
The Bij describe the same change of shape and position of the volume
P
element as the B however, an essential geometric difference exists:

ij’

in the case of the elastic shear, the original right angle beteeen the
indicated directions is changed by the shear angle. Consequently, the
difference between 321 and Bl2 in the case of smaller distortions is

now a rigid rotation of the volume element (Fig. 12(c), (d)). We split

Bij again into its symmetric and antisymmetric parts

Bi' =€ .+ (I.4)

J ij i3’

thus eij is the ordinary strain tensor of the elasticity theory and

wij the tensor which describes the rigid rotation of the volume element,
The same holds as before in the case of larger distortions.
There is no basic difficulty in measuring the elastic deformation

of a voluma e¢lement in {he final state when we cut it out and let it relax.
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Thereafter, its principal directions are again orthogonal to one another
and we can measure in addition the orientation of the elements with
respect to a normal orientation. If we carry this out for all the ele-
ments, we can specify the rotations that took place up tc a constant
rotation common to all of the elements. This means that the elastic
strain is a state function, whereas the same is not true for the rota-

tions but is true for their local derivatives. These describe clearly

-

a bending of the structure. Since the elastic deformations and struc-

ture curvatures follow uniquely from the elastic distortion tensor, this

characterizes the state of the medium after the deformation. But it is %
impossible to measure only from the final state the plLastic distortions,
strains and rotations that took place. This is due to the fact that by
a pure plastic distortion, as in Fig, 11, the state cf a volume element
is not changed. See also the introduction.
In the general case, a volume element will he simultaneously

plastically and elastically distorted. Let

T
dsJ = daJ + ng (1.5)

be the total relative displacement of the boundary surfaces of the

volume element a&s before. Then we define the tensor of the total
T T

distortion § = (Bij) by the equation

T T
dsiJ = sij dxi. (1.6)

To begin with, it is sufficiently characterized by the relation ;

P

14 (1.7)

=8

=Byt 8

By

Equation (I.7) is also correct for larger distortions when one refers

dx, always to the initial state (810).
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§3. The Geometric Principal Equation of the
Continuum Mechanics of Rigid Bodies

We describe in the following a thought experiment, which is taken
as a basic experiment in the continuum theory of dislocations.

If we apply a sufficiently large external stress to a plastic
medium, it is possible that dislocations are develop#d, move, and pro-
duce plastic distortions of the body's volume elements. It is possible,
for instance, that these dislocations leave the body or that disloca-
tions with opposite sign cancel each other in fthe interior of the body,
or that dislocations come to rest after moving in the matter and produce
a dislocation density. We assume that these dislocations come to rest
not in the interior but between the volume elements, As the size of the
volume elements is expected to become zero, we get at least a macroscop-
ically continuous distribution function of dislocations, if the exterior
stress is continuous. It is usually assumed in continuum mechanics that

essentially
the distortions are/\:omogeneous over many volume elements dV, which means
that the dislocations move ir straight lines in such a region.

As a result of the stresses which are applied to the body, each
volume element will experience a certain dislocation motion, and this
we will evaluate as a function of the position of the volume element,
for instance, relative to the initial conditions (84). Now we imagine
that the body in the initial condition is cut into its volume elements
and the dislocation motion associated with the element is carried out in
each element independently of the other elements. In other words, we
impress on each element a plastic distortion, ap(f). In any case the
elements are without stress afterwards and also their orientations are

preserved, Now there are two possibilities.

-
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1. The volume elements fit together completely after accom-
plishing the plastic distortion, and there are no cracks. Then we can
imagine that they can coalesce without restraint, and we get the body
in the shape that it would be if we had not cut it before the disloca-
tion motion. Especially, the body is without self stress and structure

curvature.1 So the state of the body is not changed but the shape is.,

1Experiments of this type in which only the strain (not the
rotation) considerea, are described often in the literature, See Fopp [44],

Reissner [122], von Laue [87].

2. The volume elements do not fit together after the deforma-
tion. Figur-> 10 shows an example in which the connecticn of the elements
is destroyed, since dislocation, which moved in from top left and whose
lines are perpendicular to the plane of the paper, came to rest between
the volume elements in such a way that the upper elements have been
traversed by more dislocations and therefore are more distorted than the
lower ones; meanwhile for the same reason, the elements to the left are
more strained than those to the right. If we then try to combine the
elements to a compact body, we have to distort them elastically in such
a way that they fit together completely. For this we have to use elastic

distortions and rotations in general. The former produce stresses, the

latter will rotate the orientation. Now we imagine that all is coalesced
again, and the forces which produced the elastic strain are removed.
- In general, then, a relaxation of the body will occur to the state of

lowest possible elastic energy. However, the stresses vanish completely

anan
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nrly if rigid rotations would be sufficient to restore the connection
which was disturbed by the plastic distortion. Finally, of course, we
have the same state that we would have if we did not cut the body belore .
the dislocation motion.
This thought experiment has to be evaluated quantitatively.
Both possibilities have in common that the body should be compact and
without cracks in the final state; i.e.,, however, that the total distor-
tion gT is a function of the position, such that the connection of the
volume elements is maintained. This requirement restricts the admissible
functions gT by which the function gp is also governed in the first case,

but not in the second case,

We will show now, that

¥Curl B =0 (I.8)

is a necessary condition in order that the connection between the volume
elements is not changed. Figurel4a shows two elements in the initial
state, The connection between the two is maintained if the right bound-
ary surface of the left and the left boundary surface of the right
suffers the same displacement. This means that the component sz and
ng have to ke the same in both elements, while the components ij

are allowed to change. Figure 14(b) and (c) shows an example of what

it looks like if the elements suffer a different distortion é;landsfz.

Hence, it is necessary to maintain the connection that

1
aazj/axl = aasj/axl = 9, From tais we conclude the necessary condition .

1It is also sufficient if we assume a continuous total displace-

ment, We will no longer be caucerned about this, A non-vanishing
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(Footnote contd.)
T
function Curl 8 could be called & crack demsity. Such things will

occur if we take too large & pass during rolling a metal.

T
J

ential, i.e., a function sT exists, which measures the total displace-~

{1.8) at once. Then obviously, ds, in eq. (1.6) is a complete differ-

nent (excer® for a rigid translation) of the points of the body. So it is

T

By

T _ T _
= asj/axi = (Grad s )ij (1.D)

P T
In the case (1) described ahove B = B for B = 0, so dgj in ea. (7.1)

~ ~

is a complete integral and

i

8° = Grad g = Grad s (1.10)

~

i In this case we get a pure plastic displacement sp of the points of
the continuum, by which its state is not changed. This case is of
great practical importance for plastic deformation. We will refer to
it later on.

Now we define concditionally the asymmetric tensor of the

dislocation density o = (Qij) by the expression

a=- Curl B (1.11)

and we will show in the next step, that this definition is the same
as that of the single dislccation.

Figure 15 shows a body into which a small number of dislocations
invaded, of which we assume that they are perpendicular to the plane of
the paper. The surfaces of motion of the dislocations are drawn in such

a way that they were drawn straight, if the dislocation, which is placed

PSR e i SR
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at the end of a surface of motion, cuts the plane F, which has an
arbitrary boundary C. Otherwise they are dotted. The motion surfaces
are oriented in such a way that they were cut in the positive direction
by C. Now we go along C and add at each motion surface the relative
displacement 65, resulting from the dislocation motion, considering
both the positive and negative side of the surfaces. For simplicity

we assume, that 6g is the same for all motion planes.1 As we can see

LThis does not mean a restriction of the generality of our

consideration, as will be shown in the following calculation,

at once, the dotted planes do not contribute anything to the sum, as

they give two opposite equal values, That is why

b=-%bg (1.12)
- C

is a direct measure for the number ard kind of the dislocations cut by
the plaune F, We call b the "Total Burgers Vector' of those disloca-

2
tions, In the case that the boundary C encloses only one dislocation

2In honor of J. M. Burgers, who introduced the circuit vector b

to specify a dislocation in a basic paper [12].

then b = - 6g is the Burgers Vector at this single dislocation.
We showed in 81 that the state of the matter with one disloca-
tion is completely determined by the specification of the curve t and

~

glide vector 6g. Now we will see that instead of the glide vector we

can use the Burgers vector. Note the important distinction between these

s —————— ————
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vectors: O0g states that due to a dislocation, which moves along a
plane, the positive side of the plane is displaced with respect to the
negative side by 8g. However, where no dislocation has moved along
6§ = 0, O0g is therefore a vector which is bound to the motion plane
and especially preserves its sense in the case that the dislocation has
moved out of the matter, i.,e., if it no longer exists. Whereas it is
only possible to define b in connection with the curve C and the bounded
surface F, respectively, and it tells us something about the distribu-
tion of the dislocations in the bodyj

When the distribution of the dislocations is sufficiently dense,

we are allowed to substitute the summation in eq. (I.12) by the integral

b=z - § bg (I.13)
& c ~

1
If we have infinitesimal areas, AF, we call the resulting Burgers

T

1
AF must be much larger than dF in order to define a disloca-
tion density through AF. If first dF goes to zero, then after this you

can take the limit for AF - O,

vector Ab., If we know this for every arbitrarily oriented surface
element at each position in the medium, then obviously we know how many
dislocations of each kind’ are at each point of the medium. That is

why the expression

aij = AbJ./éFi (1.14)

is defined to be the "tensor of the dislocation density" or (shorter)
the "dislocation tensor." As the dislocation density is a tensor field,

it is sufficient to know the Burgersvector of three plane elements,

Rt L L PO e




wvhich are oriented in the same manner as the cartesian coordinate axis.
I1f we measure, ©.g., the Burgers ve. .- r of the plane AF having only the
component AB, and we have no values for the planes AFz and AF3, then it
is obvious that the line direction and the Burgers vector are parallel;
accoarding to 81 thz diagonal components of ai) are screw dislocations

n the i (=zj) direction, Similarly, we will notice that the other

comzonents of 01 are edge dislocations in the i-direction with the

J

Burgers vecter in the j-direction. In short, the first index of aij
indicates the line direction, the second one the direction of the
Burgers vector. Ve call the total Burgers vector of all dislocrations
cutting an arkitrary plane F the dislocation flux through F. From

eq, (T 14) evidently it is defined as

b = H dF - « (1.15)
-~ F ~ Land

On the other hand, we can calculate it by eq. (I.13) to be

B='§5§='§df5=‘§d.’55p=-ffd20ur1gp (1.16)
C C C F

In this we use the fact that if we integrate f 6§ along dxi, qE
results of course (Fig. 11); this is replaced by eq. (I.1) and finally,
Stokes' theorem is used. Since the surface F was arbitrary, we conclude
eq. (I.11) directly by comparing with eq. (I.15).

Hence, from eq. (I1.7), (I.8) and (I1.11) follows immediately the
"geometrical basic equation of continuum mechanics."1

Curl B = o (1.17)

~

1
Equation (I.17) or equivalent formulations were independently

given by Xondo [73,74], Bilby, Bullough and Smith {3,4,5] and Kroner
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(Footnote contd.)

{81,82,84]. The first of the authors mentioned used from the beginning
formulations which hold for large distortions (826 to 828), whereas the
present author introduces those distortions iater on., The derivation
given here was carried out by Kroner and Rieder. Equation (1.17) reads
in cartesian coordinates i

8 - % = / = -
By xy - By, 0y = ), OBy, 0K, - BB, %y = A,

5633,5x2 - 6823/6x3 = 013, etc,

According to what we mentioned before, it is understood as follows.
If dislocation motion or a plastic distortion EP, respectively, occurs
in such a way that dislocations with density o come to rest in the
medium, then the distortion Ep, if it occurs alone, would destroy the
connection of the body. Since the cohesion forces of the medium oppose
this, elastic distortions develop simultaneously in such a way that the
body remains intact. Equation (1.17) holds also for large distortions,
if we refer < and g to the initial state and we also differentiate in
the initial state. See 8§10,

Hence, from eq. (1.17) follows the relation first mentioned by
Nye ([13]

(aai /axi) sdiva=0 (1.18)

~

i

As the first index of aij indicates the line direction of the dislo-
catior.,, obviously this equation means nothing more than the fact that
dislocation lines are not allowed to terminate in the interior of a

medium, This we emphasized in 81.




From eq. (1.5) follcws, since dsT is a complete differential,
the relation f da = - § dg for an arbitrary closed curve. Heuace, it

follows from eq. (1.13) also

b=fds=§ax-.8 (1.19)
C c

In this form Burgers had introducd the circuit vector E.

Finally, we will mention another analogy, which is related to
the theory for the magnetic field of a stationary current and which was
extremely useful in finding the geometrical basic equation [81]. The
quantities by analogy are: electrical intensity of current i, and
Burgers vector b; current density l and dislocation density @; magnetic
field H and distortion field E. For later on we add: magnetic induc-
tion B and stress g. The equations analogous to (L15), (L17) and

(1.,18) are: i =.ﬁf qg « j, curl 5 = 1, div 2 = 0.

§4. Dislocation Motion and Plastic Distortion

The geometrical basic equation (I,17) contains only state
variables, which is why it is useful to describe the state after the
plastic deformation is carried out. However, we need a relation which
describes quantitatively the .totion of the dislocation and the result-
ing plastic distortions. The equation which will govern this will not
contain state variables.

We can imagine that the distortions of Fig. 11 produced dislo-
cations whose line direction was the x3-direction and which moved in

the xl-direction. Then the direction of the related Burgers vector

was X,, Xz, X), in Fig. 1lb,c,d (we do not consider the sign at the
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moment). A complete investigation has to constider the nine indepen-
dent dislocation components and the three independent directions of
motion. Therefore, we have to investigate 27 different dislocation
motions,

We describe a dislocation motion in general by specifying at
every position, x, 27 quantities Nijk’ which mean the number of °3k
dislocations (per unit length measured perpendicular to the direction
of the line and of the motion) which moved past x in the i-direction.
For this we assume for simplicity that all dislocations have the same
value of b, the Burgers vector, however, it is not difficult to con-
sider also the case in which the Burgers vectors are different.

In the expression Nijk the

first index refers to the direction of motion

second index refers to the direction of the line

third index refers to the direction of burgers vector
of the dislocation; j = k are screw dislocation, j # k are edge disloca-
tions. As we concluded from the consideration at the end of #1, the
following correspondences hold:

i#j=k glide of a screw dislocation

k=1i#] glide of an edge dislocation

i1i#J#%k, k#1i climb of an edge dislocation,
i=j means a motion of the dislocation in the direction of its line
and causes no distortion. It is not necessary that we investigate
this motion.

So we recorded all 27 components of Nijk' From the vector prop-

erty describing the motion direction and the tensor prcperty of the dis-

location tensor, we conclude that Ni are the components of a third-

Jk




34

order temsor, which we call "dislocation motion temsor.” Furtherwore,

we write 1 = -1 etc. Therefore, the N123 motion causes the same dis-

tortion as a N=- == and N motion. We arrange the choice of the

123’ %123 123
positive side of the motion planes in such a manner that they are +x,
sides. Then the motions which caused the plastic distortions in

Fig. 11b to d are the following:

b: N, z, &nd N=__ respectively or also N31 and N_-_ respectively

132 132 2 312
c: N1§3 and Jf33 respectively or also N313 and N3i3 respectively
d: N1§1 and “TSI respectively or also N311 and Nail respectively

The specification is complete and the reader is advised to check it by

considering the sign convention of §1.1 If we let the edge of the

1The line direction of the dislocation shall be parallel to
the boundary of the plane cf motion (after the motion) taken in the

right hand sense relative to the normnal plane,

volume element have the length £, then g has the same value as

Nk
the total glide vector of the dislocations which moved through the
volume element, therefore it has the same magnitude as the distortion

which caused the motion N This distortion we will temporarily

ijk’
P .
call Bijk' As we can see from our examples the same distortion results

from dislocation motions which are anti-symmetrical with respect to the

first two indices. As mentioned above, no distortion belongs to the

motion Nijk (i=j). We get now (Kroner and Rieder [84] (6g = -b)
B - - (n - N )b (1.20)
ijk ijk Jik ’

-
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23 an invariant relation between the dislocation
motion and the plastic distortion. As an antisymmetrical third-order

tensor, BP has nine independent components, and therefore it i3 vos~

ijk

sible to replace it in the usual way by a second-.rder tensor

P

P P P 1
Bi.ﬂ( = eiJ‘ sz ' Bkl = -2ﬂ ‘1Jk B1J‘ (I.21)

P
i)

eq. (I.21) by eq. (I.20) and then use the resulting equation

To verify these relations readily we replace B ) in the second of

P

Bu= - eijk Nijzb (1.22)

for the examples b to d.

Now we assume that the dislocation motion N changes because

ijk
dislocations come to rest with a constant density. The decrease in the
number of dislocatious which, for instance, moved a distance dx1 with
width dx2 in the xl-direction is, of course, equal to the number of
dislocations which cut the plane element dF = dx1 dx2 after the motion.

That means

aNijk '
b =S & ajk (1.23)

oN
and since -3%15 = 0 (i.e., also the moving dislocations do not termi-
i

nate in the interior of the body) it follows with respect to eq. (I.20)

that

aBijk _




In words: The plastic distortion is changed in the direction of motion
if dislocations from out of the moving group come to rest with a density

P

@ Figure 13 gives an example cf this. If we replace Bijk in

Jk’
eq. {1.24) by ij’ eq. (I.11) follows immediately.

The dislocation motion tensor is connected much more closely
with the real process of plastic deformation than the previously used
terms, This may be its main importance. We differentiate it with
respect to time and define by this a dislocation velocity tensor, which
can represent a suitable starting point for future dynamics of disloca-
tions, e.g., it is elementary to formulate a friction law for disloca-
tion motions, since the friction force (which finally balances the driv-

ing force, causing a constant dislocation velocity) is proportional to

the dislocation velocity tensor.

€5, The Invariant Elements of the Distortion Fields

In this chapter we assume an infinite medium, The distortions
are continuous and twice differentiable and may vanish at infinity.

Thus the following decomposition is unique:

p P
B = grad s + curl ¢P (1.25)

~ ~

B - grad s + curl { (1.26)

Cp EX (ij) and Q'E (g4j) are symmetrical tensor fields.

According to 83, a distortion, whether plastic or elastic,
trans:orms a compact body into a compact body again if we can derive
it from a displacement field by using the gradient. So a plastic dis-

p
tortion, grad s , does not require an elastic distortion to maintain
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the connection in the body, and so occurs without stress leaving the
orientation unchanged,
In principle, the total distortion BT =B + ﬁp has to be

a gradient temsor (eq. (1.9)), hence it follows
P
curl {:-curl § (1.27)

This means that the destruction of the connection caused by the plastic
distortions, curl gp, is just cancelled by the elastic distortion,

curl E- Therefore, it seems that fp is completely independent of the
functions gp, €, s. The reason, therefore, is that our consideration

is still incomplete. In reality, especially in a real body, and there-
fore we assume it is also for our continuum, there 1§ a coupling between
§? and gp in such a way that the number of the dislocations which came
to rest during the dislocation motion is a function of the number of
the dislocations which were moving, and may also depend on the position,
Such a relation would mean a restriction fur the allowed dislocation

motion as a function of position. Thus we are able to separate that

part of the total distortion

BT - grad (s + sp) (1.28)

which occurred without changing the state. The meaning of sP is

obviously the plastic displacement of the points of the medium which
P P
belong to the part grad s of B,
The tensors [ and QP have not been interpreted until now., They
are a sort of potential from which we can derive the distortions.

In spite of this, however, s is an elastic field of displacement, If

P
we cancel the plastic distortion, curl { , by the elastic distortion

~
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according to eq. (1.27), and we remove the forces which produced this,
a partial relaxetion takes place to a state of the lowest elastic
energy, cavsing ihe material points to suffer a displacement, 5.
So we can see how the total displacement ET is composed of the plast.c
and elastic displacements,

In the appendix we will show that, by further decomposition of

curl (, we will get for B

=V, 8! - ¢ € v 6
Bis = 7155 = €32 %gam Tk Ym lan * Oy o
where 53 = s:j + uJ and uj is a vector field with div u = 0;
1, is a symmetric, 911 an antisymmetric tensor field. 1In a
similar manner, we define by the equations
0 =¢ . 0, 8 =L¢c 0 (1.30)
ij ijk x’ k™ 2 "ijk 1j
a vector field
6 = v
k eijk Vi uJ + kl (1.31)

where A is a scalar field, Now we define in general the incompat-

ibility (inc) of a second-order tensor field by the identity

= (- € v =
inc‘g ( eik& i A Vm gzn) vV x 5 x V (1.32)
Its name is derived from the fact [77] that
ince=0 (1.33)

is the condition of compatibility of (small) elastic distortions ¢_
[86,34]. (The deformations are compatible if their incompatibility

we
vanishes.,) As/may easily calculate, the incompatibility of a
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symmetric temsocr produces a symmetric tensor, and the corresppnding
result holds for an asymmetric temsor.

Therefore, we can write eq. (I.29) in the form
B=grads' +inc i+ € (1.34)
P
We can write B in the same form
Bp = grad s'P 4 inc 1P, o° (1.35)

T
Since the total distortion B = B + BP is a gradient tensor, it must

~

be that

inci<- inci’, 8= -6 (1.36)

-~ ~

1f we compare this with eq. (I.27), we have to notice that

P
curl CP = inec i + ep + grad up (1.37)

~

P P
So it is sufficient to remove the part inc i + 8 of curl §

since the tensor grad uP is unimportant for the relations of connection.

1f we write ([52], vol. 1, pg. 97)

1
d =l ! !
eff 5 isj + Vjsi) (1.38)

v
(read def as "deformation of") then the symmetric part of eq. (I.34)

has the form1

€ =def (s + u) + inc i (1.39)

1This follows from the theorem that in infinite space it is
possible to separate a tensor field which vanishes at infinity uniquely

by equations like (I.39)

A AL A 4
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and the antisymmetric part

1
i S 2 -9 0 .40
J)ij = I.Vi(s+u):j J(s+u)i]+ i3 (1.40)
which we can write by using eq. (I.30,31)
1
Wy :.--2-[Vi(s-u):j -VJ(s -u)i] + ei;jk Vk)\ (1.41)
From the identical relations
div inc = 0
(1.42)
inc def = 0

which can easily be checked, it follows that eq. (I.39) shows the

decomposition of the elastic deformation field into its compatible

and incompatible par%, Similarly, eq, (I.41) is the decomposition
of the rotation field in its compatible and incompatible part.
We can easily prove that only the part with A remains if we substi-

1

J

e ARSI

e

1Every tensor of the form ei

jk Vk)\ can also be written as an

antisymmetric incompatibility (Appendix).

The incompatible rotation field therefore has the form w;nc =

2
grad )\)k. Especially, notice that the compatible strains and

w

2Another view point is: The rotation Wiy " eij in eq. (1.40)

are "incompatible" with the strains def (s + u) in eq. (I.39), so we

can also call eij the incompatible rotation [81].
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rotations are no longer coupled as they are in the classical thecu.y

of elasticity, Moreover, there are states possible in which u + s

-~

is equal to an arbitrary vector p and u - s is equal to an almost1

1
For div u = 0, we can not simul taneously prescribe the part
of P and g derived from the gradient operation. Anyway the part of

g due to the gradient operation does not contribute to w,

5

arbitrary vector g.

In no case are we allowed to interpret E as a displacement field
u is not easily interpreted, but is similar to A, a sort of a potential
from which we can derive the rotation, We also should notice that
in eq. (I.41) the rotation of single volume elements was not decom-
posed, but rather the rotation field, i.e,, eq. (I.41) indicates in
which way the rotation varies from element to element, wij at the
point X is a rigid rotation of the volume element dV(f) as we defined
in 82,

The special importance of eq. (1.34) is that here the distor-
tions which restore the connection, are shown separately in *he sym-

metric and antisymmetric part. If we substitute Bij from eq. (I1.34)

in eq. (1.17), we get by use of
curl (inc i + 0) = « (1.43)

the basic equation which the author first derived {81],

The phencmena which are connected with the distortion inc i
and S, we will consider in the next two sectioms., Here we will only
count the degrees of freedom which are contained in the plastic and

elastic distortions, There are twelve in all, namely, three per

e
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-~

p P 1
grad s and grad s and six per curl { and cur} (. Of the last
P
six, there are always three for the incompatible strains inc i and inc i

p
and three for the rotation © and 6,

1For we are allowed to specify three secondary conditions for

-P and 7, The same holds for ip and i (Appendix),.

143 &

86, The Gecmetric Origin of Thermal Stresses,
Magnetic Stresses and
Stress Concentrations
We will now summarize the important facts of plastic deforma-~
tion with respect to the macroscopic standpoint. We imagine that the
body is cut into its volume elements and we apply to each element by
dislocation motion, the desired plastic (stress free) distor-
tion BP. After this, in general, the volume elcments do not fit
together, and elastic distortions (inc 3 + 9) are necessary in order
that they be able to fit together again., After this we imagine that
all coalesce, and we remove all the forces whirh caused the elastic
deformation., Thereafter, a relaxation (grad f') into the state of the
lowest energy occurs, At the end we observe a dislocation density
a = - curl gp.
We can change the experiment in this way: We apply to the
volume element not plastic distortions by dislocation motion but =

quasi plastic distortion, e.g., by an increase in temperature, As we

know, for a vclume element at x [79]
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59 LT (1.44)
i) 1)

if 15 the thermal expansion coefficient and the reference temper-
ature 15 zero, loth r(f) and §Q(§) are continuous functions of
positiorn of the volume element, Moreover, EQ is naturally a spher-
ically symmetric tensor, so it is a pure strain, and we can write CQ

instead of SQ. We call SQ quasiplastic, for these distortions do not

cauce repulsive forces. Now the equation

5kl 7k Vl v A= T (1.43)

always has a solution. So we are able to write BQ by use of eq. (A.2)

also in the form

Q . L oo o oo
= . ) 3 v S v - € € v V ¢ .
Y 1 ke TR LT TN ikm jm x 4 (1. 46)
or by use of eq. (1.32) [I iij]
89 . def (grad ) + inc (¢ D) (1.47)

where 1t 15 pu-sible to substitute grad tor def. The second term

Q

causes the distortion 27 to occur accompanied by a disturbance of the
connection, after which the conncection can only he maintained by an

elastic distortion of the fors 1nc 1 = - inc (¥ 1). Now we can define

a quasi dislocation density by the equation

0 -
o] - curl :Q (I.48)

The state of elastic daistortien which belongs to OQ is then the same

as that which was produced by a dislocation motion during which dislocations
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of the density & = aQ came to rest. Therefore, in a continuum to
which a distribution of temperature 1s applied we can eliminate

elastic distortions if the dislocations of density
@=-0 = curl (T I} (1.49)

are introduced. Certainly this process is important when large thermal
stresses occur as they do during the cocling of cast iron. Since in
this case it is easy to calculate the necessary dislocation arrangement,
this is an impressive example of the practical use of the concept that
thermal stress is considered as being caused by dislocations,

If we bring a sample of a ferromagnetic metal, but which is non-
magnetic as a whole, into a sufficiently strong magnetic fizld, then all
elementary dipoles align themselves parallel to the direction of the
field. In many cases a quasiplastic elongation of the sample occurs in
the direction of the magnetic field, whereas the volume remains approx-
imately the same, I[f the magnetic direction changes in the body from
place to rlace, then we can perform again the thought experiment men-
tioned above, The quasiplastic distortion of the volume elements becomes
then a (symmetric) deviator, since the volume remains the same. Also, we
can define by the help of eq. (I.48) a quasidislocation density and indi-
cate in which way the dislocations will be arranged in the magneto-
strictivly strained body to keep the elastic energy as low as possible.
Such investigzations are very important in experiments, which are cur-
rently being carried out, designed to understand the curve of the magne-

tization of ferromagnetic metals. For this see [11l, 155, 124].

.
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ncroscopically Varying, We imagine the Pure Crystaj Cut jinge its

Volume ele-onts, then ye dissolye in eacp the quantity of the atomg

11=ng'3 (e v al.j) (1.5])

inc 3 _ H (1,517

e P
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inc e= " {1.52)

~

For ™ = 0 these are the compatibility conditions of de St. Venant,
In the case of temperature fields, we get, e.g., by use of eq. (I,.51)
and (1.49) (79]

M=y inc (TD (1.53)

-~

i.e., the incompatibility field 3 which belongs to a temperature field
is easy to cslculate., If B is known however, then the associated
stresses are relatively easy to determine (B13).

Perhaps we can illustrate the importance of eq. (1.52) in
elasticity theory as follows: Since it was developed from eq. (I1.17)
by taking the curl from the right and symmetrizing, it must contain
part of the meaning of the equation but the other part must be lost, From
the relation inc def : 0, we obtain the result that in the case of

-

= 0, the strain € can be derived from an elastic displacement field s,

if we assume, as was previously always done in the theory of elasticity,

that 8 of eq., (I.40) is zero.1 The elastic rotation %(Vs - s ) follows

lyith @ = 0, u = const by use of eq. (V73D (for div u = 0),

from the same displacement field, As we know then the displacements
are determined by the strain with exception of a rigid rotation of the
whole body. In this case the eq. (I1.52) are equivalent with curl E = 0,
The second automatically contains the statement 9~= const, as will be
shown in the next section. Exactly this statement is lost, if we

derive the equation inc € = 0 from the equation curl B = O,

~
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So the classical theory of elasticity is defined by the equation

curl B = O or which is equivalent, by inc ¢ = 0; @ = O,

If 1 £ 0 the plastic deformation field has the form
def fp + inc Ep. The second part always causes the plastic or quasi- ‘
plastic distortion not to maintain the connection of the body and
therefore gives rise to elastic strain and subsequently to self stressss,

The existence of an incompatibility field is therefore (in any case in ‘
a simply connected body) a presumption that self stresses can appear,

It is easy to show that in the region of the linear theory of elastic-

ity the totality of the stresses which are possible in a body are

uniquely determined by given external forces and the incompatibilities

(816).

57. The Curvature of the Structure without Stresses

The fact that the dislocation causes rotations during its motion,
was used for explaining important phenomena in the physics of metals,
So first Burgers (12] and Bragg [10] found that the grain boundary between
two crystallites (grains) with a small difference in their orientation
is built up by a two-dimensional arrangement of dislocations at the grain
boundary, I1 we study the volume shown in Fig., 16a, for instance, a
group of &

3

and should come to rest along the indicated plane with a constant density,

l-edge dislocations should run through it in the xl-direction
By cutting previously along this plane, the distortion of Fig. 16b is
produced. By rotating each layer through the angle & 9 we can restore

the destroyed connection, Between each two layers which were separated
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by a dislocation wall we have a difference in the orientation by the
angle 8 0. Figure 16c shows the same for a motion of a - (022 + 033)

screw dislccation in xl-direction it 022 = 033. The assignment now is
to find a reiation between the rotation and the density of the disloca-
tions which come to rest,

In the beginning we can restrict our considerations to the case
in which the dislocation density is homogeneous, By eq. (I.51), the
incompatibility tensor vanishes, and if also no external force is applied
to the volume, then this is free of elastic strain altogether., In 814
we will prove this exactly. This statement holds only for small distor-
tions and dislocation densities, respectively, to which we now restrict
our considerations, Therefore, in our case Bij = 913' where 913 are
the elastic (= rigid) rotations of the volume elements dV, by which the
connection, which was destroyed in Fig. 16b and c, was destroyed. For
the Burgers circuit, therefore, we get on the one hand |see eq. (I.l5)

and (1.19)]

g da, = ﬁ dx, Bij=.2! aF, (1.54)

9 dx B = ﬁ dx e =] § d s
x E l A ' X, ol (I. 55)

1
as § d(x,8,,) = 0.° If we substitute df = ¢, db , then we get

for the right-hand side of eq. (I.55)

1 .
As proof take 9i as a linear function of Xy

J
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(= § X, dek) = g X x deé, (1. 56)

€
1jk

where dﬁk is the angle of rotation between two neighboring volume
elements, Now we define with Nye [113] the (macroscopic) curvature

tensor K = (Kij) by the equation

dx (1.57)

dek =) Kkl )

The diagonal components of Kkt are twistings (screwings) of the
xi-plane, meanwhile the other components are bendings of the xi-plane
around the k-direction, ar we can easily see, e.g., in Fig. 16.

If we put eq. (I1.57) in(1.56), we get (Stokes' Theorem)

- ) dx, = - '
eijk‘g X5 Kt%%g €ijk mn fl-! aE S Va s Kep)

=7 €k Sami fi! o Er (1.58)

since for a constant dislocation density Kkl is constant and

an,1 = éni' After comparing with eq. (I.54) and with the decomposing
formula (A.2), the relation, which was first derived by Nye [113]
using another approach, between dislocation density and curvature of

structure follows

=6 -
aij i Kkk Kij’ (1.59)

while the inverse is

1
K, =38 (1.60)

o -a
ij ij kk ij
This equation also holds for small dislocation densities and curva-

tures, respectively, i.e., the change of the orientation dek must

be small relative to 1 over the distance dx‘.




For further discussion, we assume a variable dislocation
now
denisity, and weAcall the relative angle of rotetion between the volume
elements dék for a reason socon to be obvious.,

If we now perform, analogous to the Burgers circuit, a closed

circuit C, along which we add the rotations 661 and déi to obtain
= 6 =
D, =§ab =§ax K, (1.61)
Cc Cc
and by Stokes' Theorem

D= -[f ®xv).qF (1.62)
g = e

While we will not perform the calculation in detail here, it follows

from eq. (1.,60), (I1.18), and (I.51)

KxVs (eidk \7k KLJ) = -1] (1.63)
Therefore, we have for infinite planes
A =
D, Tlij AFJ., (1.64)

which we can regard csimilar to eq. (I.14) as defining equation for D 0
According to eq. (1.63), dei in eq. (I.57) is then only an
exact differential if E = 0, meanwhile for dgi, the analogous con-
clusion is @ = 0. Also, in the case of B = 0, a continuous vector
field 61 exists, which describes that part of the rotation of the

structure (the "part of the grain boundary") 1 which depends directly
?

on the dislocations, and it is identical with 8 of eq. (I.31)(for n=o0.

1For this relation also see 823,
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This we can see from our previous investigations of the problem: d91
wvere the rotations which would restore the connection which was dis-
turbed by the dislocation motion. The same holds for déin The curva-
tures of the structure related to this occur without stresses because
there are no external forces and incompatibilities (814),

The tensor 5 obviously does not contain the elastic rotations,
(\7is‘j - V,si)/z, wvhich depend on the curvatures, The curvatures of the
structure actually observed can be described with another curvature

tensor, which is defined instead of eq. (I.57) by

du, = H, . dx, (1.65)

However, with a continuously varying dislocation density g, also E and
w, are continuous functions of position (for E, at least in a simply
connected body, must be unique), therefore dwi is a total differential.
This, however, holds only for small rotations, see for this Bilby and
Smith [5]. If there are no elastic defcrmations Kij becone identical
with Hij (then, however, ViSJ - Vjsi = 0) .

Egquation (1. 64) states that the Burgers vector B has the same
relation to the dislocations as the ritation vector P has to the incom-
patibilities, Look again at Fig. 15. The original planes of motion
of the dislocations will now be dislocation walls with a constant dis-~-
location density in the plane in the manner of those of Fig. 16,
Taking a circuit along t;; boundary of the plane F, we cut dislocation
walls, and we always add the relative rotation of two volume elements,

Then, however, the dotted dislocation walls do not contributs anything,

since they were cut twice but in opposite directions: If we imagine

b3

3
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that we cut a single plane along the dislocation walls, then both of the
cut edges would be spread by the angle of rotation dbi. With this
approach we get directly a method of measuring the incompatibility of

a state of stress. We cut a thin as possible closed ring, which repre-
sents the boundary of a (macroscopic) plane element AFJ. Then we cut
this ring open and measure the relative rotation of the cut edge which
occurs during the relaxation. The rotation vector is ADi, from which

T., follows by eq. (1.64),

i
For the following reason the ring which is cut out should be so
thin as to define effectively only the related surface AFj. For thicker
rings there is an additional strain of the cut edge, which interferes
with the measurement. In practical cases we will never measure a body
in this way. However, we can get a qualitative impression of the
"average of the incompatibilities" and therefore of the state of the

self stresses (see Chapter II), if we carry out this measurement on

. 1
several macroscopic planes F,

1
The problem of measuring the internal stresses in the interior
of a body is presently unsolved. See for this Reimer's [175] work men-

tioning the magnetic method, which is applicable in some cases.

From these considerations we approach Volterra's distortions of
the second kind (81), Figure 17a shows a cylinder into which only one
dislocation wall penetrates as in Fig, 15, Arourd the boundary of this
wall a hollow torus may be removed. Then uiie hollow cylinder is in a

Volterra state of distortion of the second kind, If we cut open the

DRFY- *
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cylinder along the dislocation wall or also along another arbitrary
plane, both of the cut edges suffer the known discontinuity of rota-
tion, i.e., the state of Fig., 17a can be produced from that of Fig. 17b,
which is without stress, by bending together and welding. In contrast
to previous opinions, the singular plane of the rotation jump can be
found at any time afterwards by experiment. In the case that the body
in Fig. 17b is a single crystal, it is evident that we can find at once
the jump of the orientation in Fig. 17a by use of x-rays (in many cases

much easier). But this is not possible for polycrystals even with more

effort.1

1See for this also the discussion of Nabarro [110], p. 349.

Therefore, a complete description of the state of the Volterra
distortion of the second kind requires an indication of a singular
plane, which we may find in any way. The occasionally used nomenclature
"elementary distortion" belongs in our opinion only to the state of the
first kind, which is consistent with the fact that we can produce each

state of the second kind by a particular arrangement of dislocations, »3

e ve know, Volterra used the word "distortion"' in a slightly
different context. The above-mentioned statement would be read: The
elementary state is that which is caused by a dislocation.

srhe re;ults which are related to the incompatibilities were
found by the author, perhaps first by Moriguti [103] and also by

Eshelby [41].
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¥R, The Conditions of the Boundary Planes for the Distortions

Any boundary surfaces of the experimental body have no been
considered previously, This we wiil remedy now, We get ut once the
conditions as~snciated with the boundary surfaces if we take in eq, (1,11)
and (1.17) instead of the curl operation the two-dimersicnal curl and
instead of the three-dimensional dislocation density g the dislocation
density of the plane . If we call the boundary surfaces 1 and 11, and
if u - (ui) is the dimensionless unit vector of the boundary surface

~

1
in the direction of 1 to [I, then we get from eq. (I.11) and (0.17)

lEquation (1.67) was formulated first by Bilby, Bullough and
Swith [3]. In many cases these authors consider a two-dimensional
dislocation arrangement as an entity called a "surface dislocation"
in contrast tc the normal line dislocation. In other papers quoted on
page 113, these authors mention different applicatione of the theory

of surface dislocations.

nx Bl - x gl - -8 1.68)
nxgl -nxBgl =& (1.67)

where, if we want, we can take the first equation also as the defining

equation for a, However, in many cases it is useful to define the dis-

~

location density of the plane aij in the sense of Schwartz's distri-

bution calculus [131] by the equation

a §(n) (1.68)

= O
ij ij
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where the parameter n characterizes a group of nlanes in such a way

that n 0 is the boundary plune, .(n) is everywhere zeoro except
<

for n U, where it goes to infinity in such a way that “(n) dn = 1,

-l
&,j i+ independent of n,
1;
From eq. (I1.68) it follows that
€T o
6 . dn . & . f(n)dn= & . (1.69)
‘e 1] e 1J ij

Now we consider an infinite body in an initial state without
dislocations, By any external forces dislocations may be daveloped,
and they may move, Here we distinguish three cases:

The first group of dislocatons must vanish or be otherwise

1
annihilated at the conclusion of the (continuously distributed) motion.

1
This annihilation can be carried out in the infinite body by

combining dislocations with orposite sign.

The second group should come to rest with a continuous density 3 in the
body. The tiiird group should also come to rest, however as a two-
dimensional density §, by which the two regions I and II of the body
may be bounded.

At the end the connection of the body should also be r.in-
tained at the boundary surface. This is required by the boundary con-
dition

s -s =0 (1,70)
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~ arte total displacene ' s us in section 2, de can differentite this

vguation in e boundacy surface, and we only lose one irrelevant

constant, The equations

n X 7 oS - X 7 s 0 (1.7Y)

and therefore practically equivalent to eq. (I1.70). Instead of (I.71)

we write with ea (1.9)

T T
nxB 'II -unxB 'I = 0 (1.72)

e.g., we obtain for a location where n points in the xl—direction
T 4T
8

g9t Poq #nd 5;1, BT , B must be the same on both sides

that 3T 8 32’ 33

21’

1
of the boundary surface. Equation (I1.72) is the sum of eqs. (I.66)

and (1.67), Also it follows, formally, of course, from eq. (I.8),

1
The same idea led us previously to eq. (I.8).

Again we consider the three dislocation groups and assume that
they occarred consecutively. The first group, of course, produced
a plastic distortion grad fp' which is continuous in the whole body.
The second group causes a distortion grad fg + curl E:, which is also
continuous in the whole body (that this contains a part grad f;
follows from the fact that the distortions which were caused by the
2nd group also depend on the path of the dislocation).

The distortiors depending on group 3 are discontinuous on the

boundary u¢urface, but are continuous in the partial bodies I and II,

Which shape do they have? The dislocations are neither annihilated
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in the body nor come to rest, Then we will remember the well-known

fact that the decomposition of the tencor field

P p L I
graa s, curl [, (i.73)

o = 23

[
-

1% not unique in a hody wiith one or more boundary surfaces, bhut there
is a distortion which can be described either as vector gradient or

as a curl tensor, If we write it as grad s then since it is simul-

=3’
taneously a curl tensor, it follows that,
P P
i ad s, - dg, =0 3
div grad :3 4 5g (1.74)

In reverse, we can, of cou'se, describe every gradient of a harmonic

voector field as a curl tensor,

p . 1 :
From t..ese considerations we can assume that we can write the

boundary conditions in the form

L5 «rack proof can be derived in addition to §4,

P P -
- - -G
n x v AT v S5 . c (1.75)
or if we take
_ P P
£ = 530y - 5, (16

as the plastic displacement jump in the boundary surface, we also can

write it in the form

This equation tells us that dislocations must be on a surface and in

what arrangement on the surface which had a nonconstant displacement

i




ump g, For application this arrangement is very important, It
applies also for large diste.tions, as does eq, (1.,17), if we relate
all values to their initial condition {£10). The boundary conditions
(1.66) and (I1.,67) become very simpie, if one of the partial bodies
becomes infinitely soft (air) or infinitely rigid, In the first case
the boundary conditions are fuli..led identically, as we e¢asily can see

from (1.70). In th. secon. case, one term of the sum cancels in

eq. (I1.66) and (I1.67), since the distortion is zero in a rigid medium
(in a rigid medium it is obvious that no dislocation can move), In
reality there is no rigid nedium, but it often happens that, e.g.,

a soft metal contains an inclusion of hard metal, the deformation of
which we can neglect. In this case the boundary value problem which
must be solved is greatly simplified. Notice ithat the situation for
stresses in the case of known boundary conditions is just opposite
(they are fulfilled identically at a boundary surface with a rigid

body).

§9. The Boundary Surface Conditions for the Strain,
Two-Dimensional Incompatibility Distribution

In 88 we assumed that the spatial density 3 of the dislocations
which came to rest is a continuous function in the whole body. This
restriction we will drop now, by allowing an additional jump of S
in the boundary surface. We will easily understand that this leads
to a jump in the plastic displacement; e.8., it is possible that in I,
edge dislocations climb by enlarging the volume of 1. meanwhile in II

2 dislocation motion occurs without change in the volume, The related
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displacement jump similarly would be described by

P F‘,I

Eq -5

; 1.78
Ea o ( )

In 87 we emphasized the importance of the incompatibilities with
respect to the =elf r‘resses. We may expect that two-dimensional
distributions of incompatibilities also may play a role in determining

self stresses., Not only the surface dislocations contribute to them,

but also the jump in a. To study this, we take the case in which plastic

? and BP are continuously distributed in I and 1I, where

distortions B 5

~

the passage between I and II can be arbitrarily discontinuous. We assume

that the function of B? which is continuous and has two derivatives is
P
continued in II, as well as BII into I. We write the distortions, sum-

marizing for the whole regions I and I1

P P P P .,
87 =8 + (B -B) 8°(m) (1.79)

where 8°(n) is Heaviside's step function, i.e., 8°(n) = 0 in I and

1 in II. We will use the following rule for the calculation [131]

d i 1 d (1 2
= §°(n) = &' n, = 67 (n) = 6" (n)
1
where 6  is the Dirac Delta function and 62 is the distribution which

describes a doublet function (Dopplebelegung). As all & depend only

1

on n, it further holds that V56° = né" and V61 = n62. Finally, if f

is a continuous function c¢f{ n and eventually of two other coordinates,

we obtain, é% (f61) = f62. In the following, we derive the asymmetric

incompatibility,

H=-7VxB xV, (1.80)

k]
s
%
]
X
4
7
1
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Initialiy we hove

l l
X P ) P : P _ Pico P . P..1
= 3 - U x E - ¥ x g + 7 x (gll §I)6 + 10X (EII 21)6 (1.81)

In cases of doubt the arrow indicates which term was differ-

entiated,

The tirst two terms are the space density and the last is the surface
density of the dislocations according to 8. For further differentia-

tion of the last term, we will use a decomposition into parts which

allows differentiation perpendicular and parallel to the surfaces:

n
vV =

a n
‘7—.3$+V EX(BXV)' (1.82)

’

Then we get

H=a¢xV=-Vx ﬁ? xV -9x (BP -Bp) x V §°

~ ~I1 ~1
p ip y, P P B9
- [V x (EII- él) Xn+nx (aII-EI) x V] 6
P P 2
-nx (EII-QI) X n 6 (1.83)

The first two terms represent the space, i1'e ngxt two the ordinary
two-dimersional incompatibility density. Furthermore, the first part
of thiz is caused by the jump of the dislocation density S, and the
second follows from the surface density §. Finally, the last term
corresponds to a two-dimensional doublet of incompatibilities,

If we carried out the operat?.,n first from the left-hand side

instead of (I.8l1) so we would get a factor of 61 in eq. (I1.83), > B
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LR - (1.84;
- n x (EII-:I) XV -9 x (§II_~I) X n .84)

otherwise eq. (I1.83) would be the same, We can show that this expres-

1 .
sion is identicul to the coefficient of " in eq. (1,83), as it must be.
n
(For it is nx28xV-VxBx ﬁ, as we easily can show by writing

n
G = v 3dd 4+ w2 dw, where v and w are the principal curva“ure direc-

tions. Therefore on/dv ~ v and dn/0w ~ W),

For that part of H which lies in the boundary surface, we now

obtain
s ks (1.85)
with
- == P P T _ == P P
H= - inc (PII_EI)’ H = - inc (BII EI). (1.86)
—— e
where the operations inc and inc are defined by
— ! T S
incf=zVxpPpxn+nxBxvV (1.87)
———1]
incf=nxB xn (1.88)
Therefore it is obvious that (see eq. (I.51))
- - n = _
H=&xn 1 @ xn II +®xV, H=®xn, (1.88a)

Of course it holds that inc (le - B?) 0 and inc (B¥I - B?) = 0,

The conditions of the boundary surface can be written as

inc (8, -B) =H inc H

inc (~II -Bp) =41, inc (EII - EI) =H, (I.88b)
We can easily show that

— S — = ===

(inc B) " = inc B7, (inc B)S = inc BS. (1.88c)

BB o
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-5 S
With 3 -~ ¢ and M - 7, vou get then

2 (e s .= b ¢ - ¢ =5 ]
inc €.) A inc ( 11 I) | (1.89)

These are the boundary conditions for the strains, From eq. (I,.88a)

the important practical relations follow,
S - g = - S
)+ (@x V) ¢ T = (¥ xn) (1.99)

The eqs. (1.30) and (I,51) show, after a simple calculation, whether

a body has or has not self stresses under the given conditions (dislo-
cation density or applied distortions), We easily can show, that in
the region where the linear theory of elaéficity holds, with given
=

", T and T the self stresses are determined uniquely (§14). In par-

~ ~

?
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ticular the self stresses vanish with simultaneously vanishing j, and B
It may be possible to calculate relatively easily the self stresses,
which belong to the given incompatibilities T, ﬁ and T, (813-15). That
i; why it should be mentioned at this point that we easily can formulate
the First Boundary Value Problem (1BVP) of the theory of elasticity

(boundary displacement given) by "V, T given."

Then we imagine that
the edge dislocation is maintained by the fact that the body adheres to
a rigid surrounding, and then we can interpret the edge displacement f
as the displacement jump -g as in 88, From the assumed g the surface
dislocation density is given by -n x Vs, and from eq. (1.90) the asso-
ciated ﬁ ar ﬁ fc Jow in a simple way. For the solution of the problem
T ﬁ given" see 815,

As the only application we take the case (hat along a plane

boundary surface between two materials, the temperature, which is




constant in each, has a jump AT T2 - Tl' Then we have to substitute
only gQ according to eq. (I.11) into eq., (1,88), and after a simple
calculation we obtain (because of the symnetry of EQ) the surface incom-
patibility ﬁ, while ﬁ vanishes hecause of the (onstancy of 8. An

obvious explanation of the doublet of the incompatibilities T foliows

in $23,

§10. Some Problems of Large Distortions

As we mentioned during the derivation of the geometric basic
equation, it holds for arbitrarily large distortions it we refer aij
and Sij to the initial state, Perhaps we imagine some resistance which
initially prevented the body from distorting during the development of
the dislocation and its motion, respectively. The distortions which
the volume element suffers after removing the resistance obviously can
be related completely to the initial state., Only if we interpret it
in this way does the geometric basic equation have the simple form
(1.17). As we see at once, the distortions which are defined by

da, = B, dx, (1.91)
J ij i

referred to the initial state are additive (but not the strain and rota-
tion by themselves). If we sum over a number of sequential distortions

then we obtain

By

¥ \Y] Vv \Y)
= al = .. dx.)) = (T B,.) d .9
d AJ 5\.)‘. d 5 )\E(BlJ xl) (\, BiJ) x4 (1.92)

where the last equation only holds, if we always take for dxi the

(constant) distance of the respective point in the initial state,

oA e
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In this cose also the distortion is composed additively from the strain
and rotation, i.e.,

B . -¢ .+ (1.93)

where, as we know, . has the form (34] Vol. I, pg. 78, [86]

L., = (1 - cos q)(kik - ) + sin q ¢ (1.94)

A
ij 3 i ijk kk

if kx is 2 unit vector in the direction of the rotation axis and q the
magni tude of the rotation angle. A given distortion can easily be

decomposed according to eq. (1.93), since €, 6 is symmetric and w, k6 is

ij iJj
completely determined by its antisymmetric part. Then eq. (1.93) is

not a decompositioi. of the tensor Bi into its symmetric and anti-

J

symmetric part, So i. is understandalle that all equations in which

€., is assumed to be the symmetric part and w

ij ij
part of 313’ hold only for small distortions. The symmetric equations

to be the antisymmetric

of incompatibility are affected by this in particular through 1, T and 1,

while the asymmetric equations of incompatibility as eq. (I.51) also
hoid for large distortions. However, their importance ha:?;een clarified
sufficiently till now., If we relate all values to the final state, then
we get a complicated form for the geometrical bafic equation, which we
will derive in Chapter 1V, However, on the other hand, the statical
basic equation (condition of equilibrium of all forces) assumes its
known simple form only in the final state, while it becomes very compli-
cated for the initial state, This means that we cannot use a simple
form of the geometrical and statical basic equation simultaneously.

There is an important exception: When the rotations wij (and

especially their grain boundary parts 91 ) are large, but the strain

J
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ciJ small, This case is of such great importance because the rotation
1
eiJ occurs without stresses, so there is no energy used and the

1This statement is only approximately true in the crystal (823)

in contrast to the continuum,

dislocations arrange themselves primarily in such a way that ‘ij is as

small as possible, whereas rij may be larger.

However, in the case of pure rotations eij' the total distor-

tion 9: + 8 -0 (see 85); i.e., all volume elements remain in their

J i

2
place, only the orientation of the lattice is rotated. If there are

2This case corresponds to Fig., 16c, but not to Fig. 16b, where
the layers 5x1 did not suffer a pure (plastic) rotation, but were simul-
taneously plastically strained, which is the reason for the total dis-
placement of the layer. If we reestablish the connection with elastic
rotations, then the body seems to be bent, whereas it is (in the case

of small plastic distortions) still without stresses.

simul taneously small strains eij’ then the volume elements only suffer
small displacements, and it is not necessary that we distinguish between
the initial and final state, e.g., the conditions of equilibrium remain

in their simple form if they were taken in the coordinates of the initial

state, In the next section we will show how we c:'n decompose the dis-

location density into a part which causes the rotation eij and one which




causes the strain eij by calculating the rotation of the lattice,
To determine the elastic strain and the self stresses, resnectively,

is only a problem of the linear theory of elasticity.

§11. Determination of the Distortions of
A Body Containing Dislocations

The main problem of the theory of dislocations is to calculate
the elastic distortions, salf stresses and rotations and curvature
of the lattice, respectively, corresponding to a certain distribution
of dislocations 3, §. o, § are not entirely arbitrary functions of
position since they must satisfy the condition that it is not possible
for dislocations to end in the interior of a body or at the boundary sur-
face. However, dislocations §, which are in the boundary surface, may
move out of this and contribute in this way to the space density @,

Equation (I.18)

V. @ =0 (1.95)

is a necessary and sufficient condition for the dislocatio.. @ not

to end. Additionally, we have for each boundary surface the equation1

n =
V. @ .+ n (@

113 7 143 ln - %3 '1) =0 CL305)

which says that where the dislocations @ have divergences, the dis-

locations & meet a boundary surface and join it.

1 n
For V see eq. (I.82).

If we substitute in this equation & = n x (BII - SI) and @ = V x B, then

it is satisfied identically, which we can take as a proof for eq. (I1.96).

o ———
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The given dislocation distribution must always satisfy the conditions
(1.95) and (1.96).

The simplest problem in which g and § are important is that
of a body which adheres tc a rigid surrounding. We wili restrict the
following considerations to this (at a free edge § = 0).

The above mentioned problem can be solved at present for small
distortions most simply by first calculating the stresses (and so also
the strains) and then the rotations. For this we have to calculate the
incompatibilities 3, ﬁ; ﬁ from g, ?, which is very simple according to
89, After calculating the stresses belonging to H, ﬂ; F we get the
strain € from Hooke's lLaw. If we now write the basic equation (I1.17)
in the form

curl @ = @ - curl ¢ (1.97)

then the right-hand side is now known. So after an easy calculatlon1
eq. (1.97) becomes

6kl Vm w, = V‘ w, = (g - curl f)kl (1.98)

(1.98) follows according to the decomposing formula (A2).

and by contracting

2 Vm Wy = (g - curl ‘)mm (1.99)

1f we substitute this in eq. (I1.98), we get

1
V‘ W =3 6kl(g - curl f)mm - (g - curl f)kt (1.100)




where the right-hand si!c is f: 111 a known function. By a simple inte-~
gration we obtain from this the rotation of the structure up to a
constant.

It is remarkable that the BVP which is to be solved for the
siresses contains the form "W ﬂ given' initially, see 89,

Now we will describe a method for calculating the rotation of
the structure before determining the stresses, which is presently
derived only for inf.nite bodies [81], however it may be possible to
extend it without much trouble for finite bodies, The starting point

is the basic equation in the form (I.43)

curl (inc 1 + 8) = o (1.1031)

It is easy to show that url inc 1)

i1 vanishes identically because

inc 1 is 1 symmetrical tensor. Thereafter it follows similar to before

(curl inc E)kl - VL q{ = a (1.102)

-la
k 2

)
mm k&
The left-hand side is {for small distortions) according to eq. (I.60)

equal to minus the curvature tensor K By taking the rotation from

kL’
the right formerly we obtained 7, see eq. (1.63). Now we take the

divergence from the right where the first term vanishes (since
inc 1 2V x1ix V):

5 1
S (5 6kl aﬁm

= o 3
K Vz kl) (1.103;
Here the right-hand side is known. 9k follows by integration, unde-
termined up to a harmonic vector. The lack of uniqueness arises from

the fact that the decomposition of B into grad s + curl { in a finite
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body is not unique; moreover, we can add an arbitrary part of the (is-
tortion which is related to the surface density E, in the form grud s
or curl (. On ‘he contrary in the infinite body Ok is determined
uniquely by eq. (1,103) (assuning g vanishes at infinity).

As mentioned in the discussion following eq. (1.96), a rota-
‘ion tensor is already determined by its antisymrwetric part., So the
integration of eq. (1,103) gives after a short calculation the rotation
tensor with g as antisymmetric part, which we will call E. This is the

grain boundary part of the rotation of the structure. So it is

inc i
€ =inci + 6 ~

I -1

(1.104)

where einc obviously is the incompatible part of the strain. The basic

equation assumes the form

curl einc = & - curl [ (1.105)

where the right-hand side is known. Then we can calculate the incom-
patibility tensor B which belongs to the elastic deformation f, by
taking a further curl from the right, which permits the calculation

of the stresses in a simple way if € is small. At least in the case
of infinite bodies, this method allows the determination of the strain
from the dislocation density if the rotations are large and the strains
small.1 During these investigations we no longer need to distinguish

between the initial and final state.

1

We didlnot consider the case where the component Q&s - VJsi)/Z

d

of w,, is large. This case is known from the ordinary theory of elastic-

iJ
ity. See e.g., Truesdell [153], who mentions the methods which we then

have to use, We will not add anything to that there,
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The case of large rotations and small strains cunnot be treated
according to the first metnod. The symmetric part of £ﬁe rotation
tensor, hownaver, contributes to the values II, H, F, which were deter-
mined from g E by the use >f the formulas of 89, and we are not
allowed to neglect this part relative to the strains for large defor-
maticnus. In eq. (1.105), however, the initially calculated part of
the rotation tensor is considered exact.

The particular case investigated above is at least as impor-
tant as the case of stresses in connection with large distortions,
which has not been treated. However, during metal manufacturing, we
often find plastic deformations of 10 and 100%, but these must be
mostly in the form of grad EP. Deformations of the type curl SP cause
simul taneous elastic distortions, curl S, the symmetric part of which
cause stresses, With the relatively weak forces with which we deform
plastically, we never can produce elastic deformations of 10 and 100%:
i.e., in most cases we can consider the strain part of curl { as small

~

and so also that (€) of B.




CHAPTER 11

DISLOCATIONS IN THE CONTINUUM: STATICS

Preface

Elastostatics is the theory of the forces which are applied to
a medium, and the problems which are investigated by this theory espe-~
cially consider the calculation of the internal forces (stresses) in
a body which result from any external sources. In our considerations
the sources are mostly dislocations, also quasi-~dislocations, accord-
ing to 8. 1In the previous literature we will find almost entirely
calculations which investigate singular lines of dislocation or at
most perhaps calculations about two-dimensional arrangements of dislo-

cations. We can treat these problems comprehensively with methods of

the classical theory of elasticity. The reason is that the elastic

ij = (Vis.j + Vjsi)/Z beyond the 4

dislocation as in the classical theory of elasticity. However, in the

strain field has the simple form ¢

case of dislocations which are distributed three-dimensionally in the
wvhole body it is not possible to derive the elastic strain from a field

of displacements, and in principle a new method is necessary, e.g.,

for calculating the self stresses g, which belong to a distribution

ij

of dislocations o, Of course, also in a body with dislocations, the

J'
conditions of equilibrium of elastostatics must be satisfied, which
can be written in the form

div g = 0 (11.1)

71
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when there are no body forces, The equation states that the tensor of

self stresses is a special tensor, for it is a tensor of incompatibility
g = inc ¥ (11.2)

which follows at once from eq. (1.42).1 The symmetrical tensor
X = (xij) is called "2nd order stress function tensor," since its

l)
components are the stress functions of Maxwell and Morera.  In

1Equation (11.2) was written first by Beltrami [161] but investi-
gated no further. See, for example, (II1.2), also Finzi [43].

%Ihe addition "2nd order" should remind us that in order to get
stresses, we have to differentiate the stress functions twice. We need
this addition sometimes to distinguish these stress functions from others

as we will see later,

contrast to previous opinions, stress functions are also useful aids

for three-~dimensional problems of the theory of elasticity. Moreover,
in the case of three-dimensionally distributed dislocations, where the
method based on the displacement field fails, stress functions are
necessary. But .e should not only consider them as a convenient aid

to calculation, for their role in the continuum theory of dislocations
is of profound importance. This can be clarified best by the remark
that the stress function tensor is the analogue of the often used vector
potential A in electrodynamics. By its use we satisfy the Maxwell
equation div §.é 0 identically; in a similar manner the conditions of

equilibrium (II.1l) are satisfied by the use of the stress function

tensor,
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812 The Stress Function Tensor
Usually we define the stress tensor g by the differential form

dpJ = ciJ d Fi' (I1.3)

where dp, is the force which is applied on the cut surface dFi if

J

no displacement with respect to the cut should occur.1

lln contrast to isotropic bodies, in a crystal asymmetric stress
tensors also play a certain role, which we will consider in #19. 1In
all the other sections we assume that the stress tensor is symmetrical
in order to avoid useless difficulties. However, it is useful even then
to maintain the order of the indices defined by eq. (I1I.3). (The 1lst

index shows the surface element, the 2nd the applied force.)

Time independent continuum mechanics of solids, as far as we

consider the state of the body, is governed by the equations

curl § = o (11.4)

div g = - F (I11.5)

~

and in addition we have the equation of energy density :

1
e = -2-0' € (11.6)

The plastic deformation grad E?, which does not change the state of
the body, is not contained in these equations. In addi..on to

eq. (11.4) to eq. (11.6), we have the constitutive equation, for which
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we always take Hooke's Law

ci,‘] = ciJkL Ck‘ (11.7)

As mentioned in 811, generally we can consider it co be satisfied
with metals even for large plastic deformations.

) is the Hooke's tensor of the elastic moduli with the
symmetry properties

Cignt = 31kt T C134k T ks ML)

In the case of elastic isotropy, we have1
= &

4yt A 6ij sz + u(ﬁik GJL + ﬁiz Jk) 5 (11.9)
where A\, u are the Lame's constants, The tenscr of the elastic
coefficients ’1sz' which is reciprocal to cijkl is def 1ed by

C.., 8., =S(5._ 6 468 6. (11.10)

ijk4 "kfmm T~ 2 Tim Jn in jm 3

1See, e.g., [34], Vol. III, pg. 60.

For isotropy it holds
1 1

sijkz = A 613 akl + E-(aik 632 + 611 6Jk) (11.11)
with

v (1/2)G '

Na == p'= (/96 (11.12)

where G = |, the shear modulus, m is the Poisson's ratio. Then the

Hooke's Law takes the form
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1 o = 2G(e

1
26 €5 =%y " T %k 1g0 iy i3 * w2 %k big’ Q)

We showed in 86 that it is easy to calculate the incompatibility tensor
which belongs to a distribution of dislocations. So we now consider

eq. (I.52) instead of eq. (II.4)

inc € = n (11.14)

In this the rotations of the structure are initially omitted accord-
ing to 86. Now the conditions of equilibrium are identically satis-
fied by the stress function (II.2) and it is unnecessary to consider

them further. In Cartesian coordinates, eq. (II.2) can be written

2 2 2
-~ 9%g3 9Xgg " 9 Xa3
11 ~ 2 2 ox,, ox
ax3 ax2 2 '3
2 (11.15)
o .2 (_ Nyg . a3 . ax31) . 9 X33
12 ax3 ax3 ax1 ax2 ax]‘ax2

in addition to these we have the four equations obtained by cyclic change

of the indices., If we take Xll = 0, we have the well-known

= Xgg = X33

equation of Morera [102]; with X1 9 = 0, we obtain Maxwell's

= Xg3 = X33

equation [99] if we assume a/ax3 =0, i.e., two-dimensional state of

stress, we will get from eq. (II.15)

32x a%x a%x
o,, = g3 .= - 9 g, = g (11.16)
1 - 2 ! 22 ~ 2 ! 12 - 3x, ox *
axz axl 1 2
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3 M3 Mgy 3 M3 Ny .
%23 © 3:1 (- le + sxz ) v 93 ¢ 532 ( le + 5:2 ) (DTGl .
3%y . a% %y .-
11 22 12 "
a = - - + 2 s (11.16")
33 2 2 ox_ ox
bxz axl 1 2

Equations (I11.16) exactly represent Airy's stress function for a two-
dimensional problem of stresses.1 If we set the terms in parentheses
in eqs. (I1.16') equal to the function §, we have the well-known stress

function of torsion.2 Notice that every stress function X

: 1 appears

1In most cases X = is called Airy's stress function.

X33

2See, e.g., Love [95] or Biezeno-Grammel [1].

only in one of the three lines (11.16), which means that the related
states of stress are independent of each other, at least with respect
to the equilibrium conditions.

Maxwell [99] and Morera [102] showed that it is possible to
describe with their functions every state of stress by div g = 0.
That the symmetric tensor X has only three degrees of freedom is caused
by the fact that according to eq. (I.42) l? = def q contributes nothing
to 0 . Therefore, a stress function tensor of the form def g is called
"tensor of the zero stress functions" [126]. So we can subject the
tensor ) to certain secondary conditions; those of Maxwell are

= 0; those of Morera, ¥ = 0; but in

X2 = Xg3 = Xa 11 = %92 = X33

all cases we first have to prove that these secondary conditions are

"permitted.” We say a secondary condition is permitted if it is
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possibie to describe every arbitrary state of stresses which satisfies
the equation div 0 = O by use of the totality of the stress function
which is restricted by the secondary conditions.

The conditions of the equilibrium are fulfilled by the stress
function. Further, the conditions cf compatibility place additional
restrictions on the stress function; we will obtain those if we substi-

tute 0 of eq. (II.2) into eq. (II.14) and use Hooke's Law (11,7)

inc [s (inc ) ) =1 (11.17)

ijkd

It is not worth while to write these equations in detail. Even in the
case of Maxwell and Morera they are very complicated; therefore, these
functions are never used.

For the following treatment of eq. (I1.17), we define--
restricted to elastic isotropy--the symmetrical tensors X;J' ﬂij by

the equations

4

' 1 1 2 1
' 2G xij —xi,j mxkk Gij’ xij = ZG(XiJ +ﬁxkk Gij) (I1.18)
1. = 26(1 s =N 6, ) 267N,.=" -Ln’ ) (11.18")
ij ij m-1 kk 1j°° ij ij m2 'kk ij *
é With the secondary condition
§
- I —-—
§ Vi xij =0 (11.19)
{
The equations (11.17) get the simpler form [77]
. . ’
LY Xg4 = TIU (11.20)
t
s or simultaneously
= g L
Mxi,j—ni,j (11.20')

as we will show now.

A e
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First, by use of the formulas of decomposition (A.l)

Myy=ne © o= =t € % " n
= A ¢1J (V1 Vk ‘kJ + VJ Vk ‘ki) + v V‘ ", ij
+ Vi VJ ‘kk -4 ‘kk 613 (11.21)

and by use of the Hooke's Law (1I.13) and the condition of equilibrium

Vi oij = 0, it follows easily
m
A oiJ * (Vi VJ Ty = A %k 613’ = 2G “13 (11.22)
These equations are known in the case of nij = 0 (from which it follows
that okk = 0) as the Beltrami's equation., Now we let oiJ = (inc Xij) and

assume that these equations are written in a form similar to eq. (II.21)

and substitute x according to eq. (11.18). Then we get, by use of

1
(11.19)

14
o J/2G =4 x J (V VJ xkk A ka Gij) (I1I.23)

This equation substituted in eq. (I11.22) gives us eq. (II.20) directly
as we easily can check. The secondary conditions of (II.19) are suffi-
cient but not necessary for us to get eq. (II.17) from eq. (II.20).

We get the necessary and sufficient conditions if we substitute OiJ
into eq. (11.22), which is calculated without the conditions (II.19),

Then we get

/ ' / !
88 X4y = A(V Vi Xy * Yy Tk %)t = 175 Y Ve %

— A [
+ =89 v, X, (11.24)

kL 13 = nij
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and the necessary and sufficient conditions are obviously

’ I m
SIS VJ g e s Y, VN Yy Xt

which is identical to

def [(m+l) Ap - mV¥p] - A © prl=0;p= vy

They are satisfied by the stronger conditions (11.19). For the proof
that the conditions (I11.19) are allowed, which naturally contains the
conditions (II1.25), we refer to the original paper [77] in which the

author initially presented the conditions (11.19). This was also found

independently by Marguerre [98].

8§13 Solution of the Superposition Problem
by Self Stresses

The first problems which were solved by three-dimensional stress
functions were related to an infinite body. 1Its volume is V. Then we
have only a superposition problem, but no boundary value problem.

The stress function tensor X of the related problem must satisfy
the necessary and sufficient conditions (II,17). Substituted these by
the sufficient conditions (I1.20) and (11.20'), respectively, and (I1.19).

1
The two first mentioned equations are satisfied by the expressions

xij (x)

- %f‘{,‘r ﬂ;J(.’E" [xx'| av’ (11.26)

x;J(;Q = - sLnIﬂ HU(E_') Ix-x"| av’ (11.26")
v




1lf we substitute eq. (11.26) iato (11.27), then we get the
stresses as a function of the distribution of the incompatibilities
after carrying sut the differentiation, These formulss were first
mentioned by Moriguti [102] (without the uQi of the stress function
tensor), who proved it by direct verification. I thank Dr. J. D,

Eshelby for calling my attention to the paper of Moriguti (March 1957).

as we know from the theory of the equations of the bipotentials,
From the identity vinij = 0, it easily follows that the secondary
equations are also fulfilled.

¥We have seen in the case of Maxwell's and Morera's functions
that the temsor inc X has only three, not six, degrees of freedom.
That holds for every tensor of incompatibility, so also for n,and nf.
So the six integrations can be reduced to three as follows.

As mentioned above, lfof eq. (I1.26) is a tensor of incompat-
ibility (div Xf: 0), since 7 is such a tensor. Also it is easy to

\

show that X in eq. (2.26) becomes a deformator if we substitute it
for n'. However, a deformator does not contribute to the stresses,
since 0 = inc X according to eq. (1.42). So obviously we get the same
stresses if we add an arbitrary deformator to the real Bfand we replace
nfin eq. (2.26) by the resulting tensor (H?). However, we can choose
n_” in such a way that, e.g., 'ﬂ’il = 'l'l'é2 = T]';3 =0 or ‘|']'£2 = 'ﬂ;s = T)gl =0,
Accordingly, it becomes x11 = x22 = x33 =0 or X12 = x23 = x31= 0.
So we get a form in Maxwell's or Morera's functions, respectively, which

is very useful for determining the states of self stresses.
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Now the calculation of 1’ is very emsy. If ve lot be
N =defas+ 7 (11.27)
= then, e.g., we have
/ = = 4 = = g J - - T"
aal'axlu nll , Bazfaxz ﬂzz, aaa,axa a3 (11.28)

from which we get useful functions a,, a,, a, after ordinary integration.

We obtain 7’ (= 11'; ), 1 # j, if we substitute this in (11.27). From this

J
follows that Morera's stress function of the self stresses is

1 " ’
Xy @ = - En'w ng, @) |x-x"| av’ 1 # 3 (11.29)

Then the simple formulas of Morera hcld for the stresses

2
oxX
(o =2 23 ete
11 axz 5x3 U -

G (=1 = 9 (- axza + 3X21 + axlz) (11.30)
23 S;I Bxl ax2 bxs
In a similarly easy way we can determine such values for a,, a,, ag
da da |
1 1 2) _ ’
) (Wz + 5—;{; = 1112 , etc. (11.31) 4

and from eq. (II.27) we get Maxwell's stress functions of the self

siresses to be

l /4 ’ A ’
e X @ = - 's?f.‘!;f nij(l) Ix-x | av 1= (11.32)
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The stresses follow from these

2 &
Xy 3733
[+ = - , etc,
L ax2 sz
3 2
2 (11.33)
97Xy
023 = g’ﬁ , etc,

With finite media, a boundary value problem always follows after the
problem of superposition. Before we treat this, we must first of all
investigate whether or not we are allowed to apply to fiaite media those
methods which we have derived for calculating the particular integral

of the differential equation (1I1.17) in the csse of infinite media.

We can easily show that in the finite medium the Lfof eq. (II.26')
does not generally satisfy the secondary condition div &f: 0. So it is
obviously not certain that this Zf represents a solution of egqgs. (II.17).
However, since div xf = 5 a permitted condition, there must be
a solution of AA Xf: Nl for which we have div &f: 0 and so fulfills

eqs. (11.17).

To get such a solution, we must look for a continuation of the
function nfin the volume external to the medium, which matches Bf at
i the boundary surface and is continuous and differentiable across it,
f and which vanishes very strongly at infinity. It is not difficult to
get such a continuation, We call the function which we find by this

method and which agrees with Bf at the surface of the body, n;. We sub-

stitute this function for 1’ into eq. (I1.26) and integrate over the
! infinite volume, So we get a field of stress functions which fulfills

the differential equation (II.20') and the secondary conditions (II1.19)
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in the whole body; thus it represents the desired particular solution
of eq. (11.17). Now we will add a deformator, def a, to ]; as above
so that we again obtain a Maxwell’s or Morera’s function. If this
method succeeds, the deformator does not contribute to the stresses,
It can easily be shown that this holds, but we dispense with the proof.

So it is possible to calculate a tensor B; = n; + def a even in a finite
medium, where only three components of n; are different from zero, Then

) , /instead of W
n{ and eqs. (I11.29) and (11.32) with nﬁ are par-

ticular integrals of these equations, which simultaneously satisfy the

it follows that AA X =

equation (11.17).

It should be mentioned that in the case of given distributions
of dislocations and incompatibilities, respectively, the methods which
are derived in this section are in practice the only ones available to

solve the superposition problem.1 In the case of quasi-dislocations (86)

1For this, see also, Eshelby [41], S. 91 ff,

where primarily the applied strains 2? are given, there still exists
the method which is known from the old theory of thermal stresses of

Duhamel (33] and Neumann [112]. By use of the expression

e _ R
Vi cijkl ekL = 35 (11,34)

the related "quasi forces" 3? and the displacement field associated
with these are calculated according to the well-known methods., From
this the total strain E? follows by taking the deformator. Then the

T Q

elastic strain is €= € - ¢  from which the stresses follow by use

B s ]

o7 o s s -reramerers SR =
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of Hooke's Law. This method might require the same effort as that of
the stress function,
Finally, we will mention a further method which is only appli-

cable to infinite media at this time. We take instead of (II.2)1

g =curl ¢ (11.35)

1Guonther [61] and Schaefer [126] use a stress function temnsor

Yijk = ‘131 ¢zk for other cases,

where ¢ = «plj) is the asymmetrical 1st order stress function tensor
(because it will be differentiated only once to get the stresses).

Then it is obvious that ¢ = X X V, from which it follows
¢11 =0 V,®,,=0 (11.36)

By taking the curl from the right hand side we get with help of (II.18)

for the secondary condition (II.19) which contains Y
V1 ¢1J =0 (11.37)

as we can easily check. Since X has three degrees of freedom by the
restriction (11,19}, ¢ also has three by the restrictions (II.36) and

(11.37)., With Hooke's Law, it follows from eq. (II. 35)

€ (11.38)

1 = skt Som “m Pns

and by taking the curl from the left hand side, we get

’

v o v vV o

h 13 % %3 " Sijkt Sghi Skam 'n 'm Pnt (11.39)

‘ghi
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which becomes in the case of isotropy, according to eq. (II.1l1),

1 I
agj =N\ egh:j ‘lmn vh Vm ¢nz

]
+ p' (e ) . (11.40) I

ghk €y mn vh vm cpn;j + egh!, ‘jmn vh vm cpnl

After multiplying with ¢, ., we obtain by use of eq. (A.2,3) and

1gj
(11.36)

1

’ 4
efg:j agj ==2(0" +u) e

i V:f Vm (pn!, : (I1.41)

This we substitute into eq. (II1.40) after replacing the indices f£,g,j by

hpq and finally, if we also use the decomposition formulas (A.2) and
consider (II.36,37)1 we get ¢

2G (md' ‘

By == oy MY, - ay). - (11.42)

1 z
For (11.36,37), eghz ejmm Vh Vm Py =" A ¢gj holds, rince

it follows from (A.1).

What does aij mean? We take the decomposition, which is unique in the g

infinite medium,
€ =def s + inc 1 (11.43)

and express the equation div g = 0 by use of Hooke's Law in terms of
1

S and i, With (1.42), we get
bs, + LV V.5, + ~> V. (inc i),, = 0 (11.44)
o © i i35 m=2 i ~3j3 " .

me2

1We restrict ourselves to small deformations and rotations.

R ST 5




and by taking the curl it follows that
dcurl s=0. (11.4%)

That is why curl s = const. in the infinite medium, From this is follows

that

curl def 3= % VXx (Vs + g_V) = %(curl g) v=20 (11.46)

and it holds that

o' = curl ¢ = curl inc i (11.47)
is
I.e., according to 83, gf|that part of the total dislocation density
which caused the stresses., In the case of quasi-dislocations g? of
Q

§6, o' is often directly . Furthermore, we have shown in 811 that we
can calculate gf when we determine the rotations (o' is equal to the
right hand side of eq. (I1.105))). So we are still allowed to consider
a' as a given function. From eq. (II.47) we can easioy see that o' -

is governed by the same conditions, (II.36) and (1i.37), as ¢, i.e.,

that also the particular integral of eq. (II.42) satisfied these conditions:
- G/2n ] <! - ! ] = I 1
93,0 = 25 w‘ ey (X) - o), xDV/|x - x| av', (11.48)

ij’

thus it gives the correct stress function tensor corresponding to o
from which the stresses follow according to eq. (II.35).

It is easy to reduce the nine integrations of eq. (II1.48) to
six, similar to the reduction of the six integrations of eq. (II.26)
to three, But we do not know if it is possible to get only three inte-
grations of (11148). In general the stress functions ¢1J have not been

explored previously, but we believe for other reasons that it is worth
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while to explore them. If we write, analogous to previous derivation,
nxes=- éf for a body which adjoins rigid surroundings, then the elastic

energy of the body takes the form, s.nce div ¢ = O,

E = %f{f Q’;J cpi.] dv + %J;\r &;-J CPiJ dF (I1.49)
or also
E = %f\!}r aij qoij dav + 12-";!‘ &ij CPiJ dF (11.50)

as we wil) show in the next section. E is expressed by the dislocations

which cause the self stresses,

E.g., if ¢1j and ¢fj are fields of stress functions caused by

two single dislocations al and 02 in the infinite medium,1 the

ij ij

energy can be written

E=%f£‘rqij cpij @+ 3 “f;fafj cpfJ dV+%f"JI‘Iaij cpfj av

1 p 2 1 '
+-2-j‘,£‘J o 9y 4 (I11.50')

1In this case we have to consider al and afj as distributiors.

ij

Obviously the third and fourth integral mean the potential energy of
one dislocation in the field of the other dislocation and vice versa,
In this way we obtain an interpretation of the stress function ¢1J'
This represents a dislocation potential. (The circumstances are
analogous to electrostatics, where we have the energy E = % I%J‘p U dv,
if p is the density of the charge. U is called the potential of the

chargae.)

.




The 2nd order stress functions xij’ are analogously the elastic

potential of the incompatibilities,

814, The Elastic Energy and the Variational Problem
in a Medium with Self Stresses

Now we will calculate the expression for the elastic energy of
a medium with self sStresses in terms of stress functions and incom-

patibilities. The starting point is the formula

E= %f“[;f 04y €4y AV (11.51)

which can be written with eq. (II.2)

E=-2¢ ¢ [[fe, v v x av (11.52)
‘213kz-.nnvvizjmx1m .

Partial integration yields

1
E= -~ 3 eijk ezmn LE! n.J eiz Vm X dr

il
va (Vjeil) Vm Xkn dv] (I1.53)

which is identical to eq. (II.49).1 Since in the initial equation

(I1.51) we can also write the distortion BiJ instead of the strains

(because of the symmetry of oy ), eq. (II,50) is proved.

J

1It holds that

Com "m Mn T 7 Pt Cigk V36E T %’ Sigk Py Sis T %
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After partial integration of the volume integral in (11.53),

we get
E-=-2¢. ¢ ([[n ¢,V dF
= 2ijkzml_,,1umxlm
1
‘f,,f (V€9 My Xy OF) + Ej‘{lf X Mg O (11.54)

where the relation (11.21) is used. Here we decompose Vm in the first

integral according to the formula

| 't
V =n ¥V n + ¢ € n Vn
m m p p mpq rsq s r p

(11.55)
which can easily be verified by the use of eq. (A.2), and where the
arrow indicates that in addition to the function which is influenced

by vm, np is also diiferentiated. The integral which is produced by
the second term of (I1.55) is integrated by parts again by the use of
Stokes' theorem, The related line integral vanishes since F is a

n

closed surface. With the abbreviation V = ¢ € n n V
m mpq rsq s p r

of eq. (I.82), the non-vanishing terms are
1 3
E= - s eiJk € ymn L&! nJ €4 M Vp(np xkn) dF
R n
_.Jg Y4en [nm Vj S P (nJ eil)}dF]
1
- EI{'I X Myp 9V (11.56)

The comparison with eqs. (1.87) and (1.90) gives in the case of the

body with a rigid surface

1 1
E=§f-£f X3 T g dv+'2-~[;~,rxij fyy &

1l »p 5
+ '2'.‘]; v, (n xiJ)Tl1J dF (11,57)

At P prns




In this equation n_ are the Cartesian components of the normal vector

k
n of the family of surfaces (88) of which one is the boundary surface F,
This interpretation of nk is necessary to carry out the differentia-
tion ank properly, for now n has also a meaning off of F (it is suf-
ficient to define n in an infinitesimal neighborhood of F).

Equation (II.57) states that the elastic emergy, hence the
self stresses, of a body which has a rigid surface vanishes if there
is no body force and the incompatibilities vanish,

Now we will treat a body with a free surface. According to
the well-known theorem of Colonnetti [17], the elastic energy of a
body to which external forces and self stresses are applied simultan-

eously i3 obtained gy adding the elastic energies of both parts; in

our nomenclature

vhere F represents the body and surface forces.1 The step from

lThis theorem also holds in the case of a body with a rigid

surface (then we can include the surface incompatibilities in 1]_).

If we let 0 = g_L + _q_s, €= L + _g_s where L indicates the stresses

[ ]

—

caused by the load and S the self stresses, then the E(g), which is

calculated according to eq. (II.51), differs from E(g_L) + E(gs) by

L

S y
the interaction energy, fﬂ‘ Gi.‘l eij dV (theorem of Betti), and since

V1 ofj = 0 this can be written in a similar form to (II.57)

ELS

n s L [ L N s =L
J£.r Xy 3 Tlu dav + J;,! Xs4 ﬂi.‘l dF + Jl:‘f Y xijmij dF
and T]L

=L e
Since T]I;J, 'ﬂu ' vanish, we have ELS = 0,

e e et
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eq. (I1.51) to (11.52) holds if there no body forces. However,

eq. (11.52) and following still contain terms due to the boundary
forces, However, as shown in 88 at a free surface the surface
incompatibilities are zero, We can show that the surface integral
in eq.(11.54) vanishes if there are no surface forces and n, 7, = O

i 'ij
so that only

zfaJ Xy Ny @ ifn N =0 (11.59)

rempins, This equation contains the theorem that in a simply con-
nected body and in the region of the linear theory of elasticity all
self stress can be derived from incompatibilities. Eq. (I11.57) eon-
tains the same theorem for a body with a rigid surface, .This holds

even if we create new houndary surfaces by allowing T to degenerate

ij
in the interior of the body to a plane (or even to a line). Accord-
ing to this it is obvious that generally in the region of the linear
theory of elasticity the theorem holds that all self stresses are
caused by incompatibilities, Furthermore, the reverse holds, that

all (symmetric) incompatibilities cause self stresses, which is

obvious from the meaning of incompatibilities as derivatives of the
elastic strains,

The question of the uniqueness of the solution is of great
importance., Thanks to the uniqueness theorem of Kirchhoff of the
classic theory of elasticity and to the theorem of Colonnettiit is suf=-
ficient to clarify that in the absence of external forces the self

stresses (which follow from the stress functions) are uniquely deter-

mined by given incompatibilities, It can readily be proved that for

2 5 T
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an infinite medium eq. (II,26) is a unique solution of (1I,.18) and
(11.20), since there is no iacompatibility at infinity. In a finite

medium, however, it must be shown thaz the additional boundary value

problem has 3 unique solution. We will show in the next section that
with self stresses we always get boith of the well-~kiown boundary
problems of the theory of elasticity, for which the proof of uniqueness
is given in literature, so it generally holds in the region of liﬁeﬁr
theory of elasticity that the stresses of a body are uniquely determined
by the external forces and the incompatibilities,

All the previously considered bodies were zimply connected
bodies even if we allow that the incompatibilities are out of the body.
(This procedure is known from hydrgodyrnamics., We calculate a flow
around a body as if there were sources and vortices in the body.)
However, in the region of the nonlinear theory of elasticity, we csunot
refer all stresses to external forces or incompatibilities, as the

example of the invertible hermisphere shows [160].

The variational problem of self stres:zes hns already been
formulated by Colonnetti [19]. In our nomenclature the expression of
the variation of the energy should vanish

1 P

j:\[}; (G €4 Oyy * €14 Oy (11.60)
where_e!;j is the imposed (plastic or quasi-plastic) strain, The second
, term of eq. (I1.60) Colonnetti called the "potential of the applied
]
4 strain."” 1f we substitute e? = eT - ¢, , according to rq., (I.1) of

i) i3 ij

page 1 into eq. (II,60), we obtain

- %f“f,‘f €y Oyy W (11.61)
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R T _
[ ey oqgav=o . (11.62)

as was first found by Rieder [125] for the case of the body with

a free surface. In this case

e o, av= (v sho, , v
Vot S CIE SRS IS
pe T . "
={"n s o dF - [[[s v. 0, . dv=0  (I1.63)
J}»_ 1§ i3 .,Vf j o174

since nicij and Vic1J vanish if there are no external forces. According

to Rieder [125], eq. (I1.17) are the Euler-Lagrange equations of the
problem of variation of eq. (II,6l) (if there are no external forces;
i.e,, the incompatibilities are given).

In the case of a rigid surface, it is possible to transform the

left-hand side of eq. (II1.62), multiplied by 1/2, to the expression

(11,57) where nij' nij' and i3

to ezj. These vanish according to the physical meaning of efj

T
a deformator, so nij = 0) furthermore, sI is zero on the rigid boundary
of the body. Also, nij = nij

are the incompatibilities which belong

(E? is

= 0 (see eqs, (I.87) to (1.89)). The

variational problem which refers to the energy expressions (II.61) and

(11.57), respectively, should include in addition to the differential

eq. (11.17) also the boundary condition (I1.89) which is in terms of

Xij' This has not been calculated previously.

5 5 For solving the variational problem of the body with a free
surface by direct methods, we must take account of the fact that there

are stress functions for which the related ﬂi vanishes, but not the

J
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relatea boundary forces nJ oij' Such stress functions do not con-
tribute to the integral (11.59) but do contribute to the integral
(I1.61)., In order to get the correct solution, therefore, the

integral (II.61) must become an extremum by constant n,l In the

case of the body with a rigid surface the integral (I1.57) is equiva-

lent to (11.61)., One of these must become an extremum by constant

T n,,, and "

i3’ 1

=11}

ij°

1Even Foppl [44] mentioned that (iI.61) should become an

extremum. The improvement is the addition "7 = const."

We will shortly consider both of the boundary value problems for
the body with a free surface (the superposition problem must be solved);
according to 88 the problem "boundary displacement given" is the same
as the problem "ﬁ , i given" for the body with a rigid surface (see
also the following section).

I1f we take the equation which was first mentioned by Schaefer

(1202
1
=w,, =wn,, & ) .
Xij ¢ij L 13 + G i (11.64)
i 2 .
! This wij is not the same as that formerly used.
where A x,, = 0, then in addition to the conditions of equilibrium,

l ij
eqs, (II.17) are also automatically satisfied by T = 0, if

m .- .
AQ = -y vi VJ wij. (11.65)

N |
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wij is similar to XiJ’ a 2nd order tensor. 1f we take as the solution
of (11.63)
- m'2 N ,
R VJ Lij tapg vV (11.66)
then we obtain
where
H=v + o] ‘x Eiil + X 6»22 + X 6933> (11.68)
- m=1 \"1 ox 2 3x 3 ax '
1 2 3
and Av = 0. We can show [77] that we are allowed to let v = L9 =
xijzwiJ‘FHéiJ i=3] (11.69)

the Maxwell's functions in the case of B'= 0 are reduced to three
harmonic functions, We can easily show that these relations fulfill
(I1.25) but not (I1.19). For the functions wij we take series of
harmonic functions and determine the coefficients by usual methods
to that the boundary conditions, which are expressed in terms of
Xij’ are matched very closely. If we add the stress functions derived
in such a way to the particular Maxwell's function, which were obtained

according to €13, then we obtain the resulting Maxwell's functions for

the associated state of stress.




8§15. Boundary Value Problems Which Arise '
with Self Stresses
and Their Treatment with Stress Functions

The particular integral (I1.29) and (I11.32) of the differential
equation (I1.17) which governs the self stresses does not fulfill in
general the boundary conditions in a body with a free surface, since the

tractions n c.1 # 0 on the boundary, whereas in the body with a rigid

i 4

surface it does not satisfy the strains (1.89), 1In the first case the

boundary value problem of the form

ni cij =) Aj ' (11.70)

remains, whereas in the second case, the form

(11.71)

e

n

[o%
=}
0

o
[}

=3
(=3
(¢}

€ =

must be solved, In both cases the stress functions used have to
satisfy eqs. (J1.17) with T = 0. We replace these according to 8§12

by the equations

/
ALy =0, Vi Xij =0 (11.72)

In practice problems occur where portions of a body separated
by a dislocation wall have different elastic moduli. In this case we
must consider the boundary conditions in terms of both the stresses
and strains, (II.70) and (I1.71) indicate the limiting cases
(modulus = 0 and @, respectively, in the partial volum;) of this
problem, to which it always can be reduced, This remark should explain

why we are conceined with the body with a rigid surface,

e i s £ bt i i et o 8




¥e wiil show now that we also can replace the boundary value

problem (I1.71) by the problem "boundary displacemeat given,”" 1

ij’
) nij’ and ﬁij may be prescribed, Then the elastic strain is composed
T
of two parts. The particular solution éD and a second part cH which

i3 i3

satisfies the homogeneous equations

inc € = 0 divg =0 o, (11.73)

3= Cijke ke

=3
=31

¢
)

We can formally associate surface incompatibilities ﬂ?,ﬁ? and

with both 5? and eH according to eqs. (II.71}. We have n? =

-~ -

{

=3
'
m qu

(=}

since E# € - €, etc. The problem is to determine a strain €
which satisfies eqs. (I1.72) and at the same t.me the boundary condi-
tions (II.71) which are written with the index H. For simplicity
we omit the index H in the'following. Because of the first equation
of (II.73) € has the form def s. We can easily show, but we will not

at this time, that in this case the boundary conditions can be integrated

* over the boundary surface and can be cast in the form
E=K (11.74)

where g is derived from n_and ﬁ: g is that displacement which will

E occur at the surface of the medium if the restraint of the rigid sur-
rounding suddenly vanished.

f_ So it is obvious that we can treat the self stresses with

the previously known boundary value problems. For these there exist
numerous solution methods, which is why we will discuss shortly the
application of three~dimensional stress functions to soive these

| problems.

e ST PR
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The stress function temsor doesz not represent a unique system

of functions, thus it represents a greater variety of physical situa-

tions than, e.g., the displacement vector, which is expressed by the
secondary conditions., So we have the possibility of adjusting our- '
selves to given problems by cahoosing the secondary conditions. Further-
more, Airy's stress funct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>